We missed this one on a previous pass of bringing in most of the cty
stdlib functions.
This will resolve#17625 by allowing conversion from Terraform's
conventional RFC 3339 timestamps into various other formats.
This function is similar to the template_file data source offered by the
template provider, but having it built in to the language makes it more
convenient to use, allowing templates to be rendered from files anywhere
an inline template would normally be allowed:
user_data = templatefile("${path.module}/userdata.tmpl", {
hostname = format("petserver%02d", count.index)
})
Unlike the template_file data source, this function allows values of any
type in its variables map, passing them through verbatim to the template.
Its tighter integration with Terraform also allows it to return better
error messages with source location information from the template itself.
The template_file data source was originally created to work around the
fact that HIL didn't have any support for map values at the time, and
even once map support was added it wasn't very usable. With HCL2
expressions, there's little reason left to use a data source to render
a template; the only remaining reason left to use template_file is to
render a template that is constructed dynamically during the Terraform
run, which is a very rare need.
Both depends_on and ignore_changes contain references to objects that we
can validate.
Historically Terraform has not validated these, instead just ignoring
references to non-existent objects. Since there is no reason to refer to
something that doesn't exist, we'll now verify this and return errors so
that users get explicit feedback on any typos they may have made, rather
than just wondering why what they added seems to have no effect.
This is particularly important for ignore_changes because users have
historically used strange values here to try to exploit the fact that
Terraform was resolving ignore_changes against a flatmap. This will give
them explicit feedback for any odd constructs that the configuration
upgrade tool doesn't know how to detect and fix.
This actually seems to be a bug in the underlying cty Convert function
since converting to cty.DynamicPseudoType should always just return the
input verbatim, but it seems like it's actually converting unknown values
of any type to be cty.DynamicVal, losing the type information.
We should eventually fix this in cty too, but having this extra check in
the Terraform layer is harmless and allows us to make progress without
context-switching.
Now that our language supports tuple/object types in addition to list/map
types, it's convenient for zipmap to be able to produce an object type
given a tuple, since this makes it symmetrical with "keys" and "values"
such the the following identity holds for any map or object value "a"
a == zipmap(keys(a), values(a))
When the values sequence is a tuple, the result has an object type whose
attribute types correspond to the given tuple types.
Since an object type has attribute names as part of its definition, there
is the additional constraint here that the result has an unknown type
(represented by the dynamic pseudo-type) if the given values is a tuple
and the given keys contains any unknown values. This isn't true for values
as a list because we can predict the resulting map element type using
just the list element type.
In the initial move to HCL2 we started relying only on full expression
evaluation to catch attribute errors, but that's not sufficient for
resource attributes in practice because during validation we can't know
yet whether a resource reference evaluates to a single object or to a
list of objects (if count is set).
To address this, here we reinstate some static validation of resource
references by analyzing directly the reference objects, disregarding any
instance index if present, and produce errors if the remaining subsequent
traversal steps do not correspond to items within the resource type
schema.
This also allows us to produce some more specialized error messages for
certain situations. In particular, we can recognize a reference like
aws_instance.foo.count, which in 0.11 and prior was a weird special case
for determining the count value of a resource block, and offer a helpful
error showing the new length(aws_instance.foo) usage pattern.
This eventually delegates to the static traversal validation logic that
was added to the configschema package in a previous commit, which also
includes some specialized error messages that distinguish between
attributes and block types in the schema so that the errors relate more
directly to constructs the user can see in the configuration.
In future we could potentially move more of the checks from the dynamic
schema construction step to the static validation step, but resources
are the reference type that most needs this immediately due to the
ambiguity caused by the instance indexing syntax. We can safely refactor
other reference types to be statically validated in later releases.
This is verified by two pre-existing context validate tests which we
temporarily disabled during earlier work (now re-enabled) and also by a
new validate test aimed specifically at the special case for the "count"
attribute.
The "values" function wasn't producing consistently-ordered keys in its
result, leading to crashes. This fixes#19204.
While working on these functions anyway, this also improves slightly their
precision when working with object types, where we can produce a more
complete result for unknown values because the attribute names are part
of the type. We can also produce results for known maps that have unknown
elements; these unknowns will also appear in the values(...) result,
allowing them to propagate through expressions.
Finally, this adds a few more test cases to try different permutations
of empty and unknown values.
When the value we're looking in has an object type, we need to know the
key in order to decide the result type. Therefore an object lookup with
an unknown key must produce cty.DynamicVal, not an unknown value with a
known type.
Since we need to know the index to know the result type for a tuple, we
need a special case here to deal with that situation and return
cty.DynamicVal; we can't predict the result type exactly until we know the
element type.
The "config" package is no longer used and will be removed as part
of the 0.12 release cleanup. Since configschema is part of the
"new world" of configuration modelling, it makes more sense for
it to live as a subdirectory of the newer "configs" package.
This is based on c811440188 made against the
old "config" package implementations, but also catches a few other cases
where we would previously have printed the private key into the error
messages.