* command/providers schemas: return empty json object if config parses successfully but no providers found
* command/show (state): return an empty object if state is nil
Previously, these commands were not checking if the user specified a
`-plugin-dir` flag during `terraform init` and would therefor fail if
providers were not in one of the standard directories.
Fixes#20547
When a planfile is supplied to the `terraform show -json` command, the
context that loads only included schemas for resources in the plan. We
found an edge case where removing a data source from the configuration
(though only if there are no managed resources from the same provider)
would cause jsonstate.Marshal to fail because the provider schema wasn't
in the plan context.
jsonplan.Marshal now takes two schemas, one for plan and one for state.
If the state schema is nil it will simply use the plan schemas.
* command/show: add support for -json output for state
* command/jsonconfig: do not marshal empty count/for each expressions
* command/jsonstate: continue gracefully if the terraform version is somehow missing from state
* command/show: adding functions to aid refactoring
The planfile -> statefile -> state logic path was getting hard to follow
with blurry human eyes. The getPlan... and getState... functions were
added to help streamline the logic flow. Continued refactoring may follow.
* command/show: use ctx.Config() instead of a config snapshot
As originally written, the jsonconfig marshaller was getting an error
when loading configs that included one or more modules. It's not clear
if that was an error in the function call or in the configloader itself,
but as a simpler solution existed I did not dig too far.
* command/jsonplan: implement jsonplan.Marshal
Split the `config` portion into a discrete package to aid in naming
sanity (so we could have for example jsonconfig.Resource instead of
jsonplan.ConfigResource) and to enable marshaling the config on it's
own.
A lot of commands used `c.Meta.flagSet()` to create the initial flagset for the command, while quite a few of them didn’t actually use or support the flags that are then added.
So I updated a few commands to use `flag.NewFlagSet()` instead to only add the flags that are actually needed/supported.
Additionally this prevents a few commands from using locking while they actually don’t need locking (as locking is enabled as a default in `c.Meta.flagSet()`.
Due to how often the state and plan types are referenced throughout
Terraform, there isn't a great way to switch them out gradually. As a
consequence, this huge commit gets us from the old world to a _compilable_
new world, but still has a large number of known test failures due to
key functionality being stubbed out.
The stubs here are for anything that interacts with providers, since we
now need to do the follow-up work to similarly replace the old
terraform.ResourceProvider interface with its replacement in the new
"providers" package. That work, along with work to fix the remaining
failing tests, will follow in subsequent commits.
The aim here was to replace all references to terraform.State and its
downstream types with states.State, terraform.Plan with plans.Plan,
state.State with statemgr.State, and switch to the new implementations of
the state and plan file formats. However, due to the number of times those
types are used, this also ended up affecting numerous other parts of core
such as terraform.Hook, the backend.Backend interface, and most of the CLI
commands.
Just as with 5861dbf3fc49b19587a31816eb06f511ab861bb4 before, I apologize
in advance to the person who inevitably just found this huge commit while
spelunking through the commit history.
This is a rather-messy, complex change to get the "command" package
building again against the new backend API that was updated for
the new configuration loader.
A lot of this is mechanical rewriting to the new API, but
meta_config.go and meta_backend.go in particular saw some major
changes to interface with the new loader APIs and to deal with
the change in order of steps in the backend API.
Previously the rendered plan output was constructed directly from the
core plan and then annotated with counts derived from the count hook.
At various places we applied little adjustments to deal with the fact that
the user-facing diff model is not identical to the internal diff model,
including the special handling of data source reads and destroys. Since
this logic was just muddled into the rendering code, it behaved
inconsistently with the tally of adds, updates and deletes.
This change reworks the plan formatter so that it happens in two stages:
- First, we produce a specialized Plan object that is tailored for use
in the UI. This applies all the relevant logic to transform the
physical model into the user model.
- Second, we do a straightforward visual rendering of the display-oriented
plan object.
For the moment this is slightly overkill since there's only one rendering
path, but it does give us the benefit of letting the counts be derived
from the same data as the full detailed diff, ensuring that they'll stay
consistent.
Later we may choose to have other UIs for plans, such as a
machine-readable output intended to drive a web UI. In that case, we'd
want the web UI to consume a serialization of the _display-oriented_ plan
so that it doesn't need to re-implement all of these UI special cases.
This introduces to core a new diff action type for "refresh". Currently
this is used _only_ in the UI layer, to represent data source reads.
Later it would be good to use this type for the core diff as well, to
improve consistency, but that is left for another day to keep this change
focused on the UI.
We're shifting terminology from "environment" to "workspace". This takes
care of some of the main internal API surface that was using the old
terminology, though is not intended to be entirely comprehensive and is
mainly just to minimize the amount of confusion for maintainers as we
continue moving towards eliminating the old terminology.
Add Env and SetEnv methods to command.Meta to retrieve the current
environment name inside any command.
Make sure all calls to Backend.State contain an environment name, and
make the package compile against the update backend package.
This means that terraform commands like `plan`, `apply`, `show`, and
`graph` will expand all modules by default.
While modules-as-black-boxes is still very true in the conceptual design
of modules, feedback on this behavior has consistently suggested that
users would prefer to see more verbose output by default.
The `-module-depth` flag and env var are retained to allow output to be
optionally limited / summarized by these commands.