In early versions of Terraform where the interpolation language didn't
have any real list support, list brackets around a single string was the
signal to split the string on a special uuid separator to produce a list
just in time for processing, giving expressions like this:
foo = ["${test_instance.foo.*.id}"]
Logically this is weird because it looks like it should produce a list
of lists of strings. When we added real list support in Terraform 0.7 we
retained support for this behavior by trimming off extra levels of list
during evaluation, and inadvertently continued relying on this notation
for correct type checking.
During the Terraform 0.10 line we fixed the type checker bugs (a few
remaining issues notwithstanding) so that it was finally possible to
use the more intuitive form:
foo = "${test_instance.foo.*.id}"
...but we continued trimming off extra levels of list for backward
compatibility.
Terraform 0.12 finally removes that compatibility shim, causing redundant
list brackets to be interpreted as a list of lists.
This upgrade rule attempts to identify situations that are relying on the
old compatibility behavior and trim off the redundant extra brackets. It's
not possible to do this fully-generally using only static analysis, but
we can gather enough information through or partial type inference
mechanism here to deal with the most common situations automatically and
produce a TF-UPGRADE-TODO comment for more complex scenarios where the
user intent isn't decidable with only static analysis.
In particular, this handles by far the most common situation of wrapping
list brackets around a splat expression like the first example above.
After this and the other upgrade rules are applied, the first example
above will become:
foo = test_instance.foo.*.id
This is a temporary implementation of these rules just so that these can
be passed through verbatim (rather than generating an error) while we
do testing of other features.
A subsequent commit will finish these with their own custom rulesets.
The main tricky thing here is ignore_changes, which contains strings that
are better given as naked traversals in 0.12. We also handle here mapping
the old special case ["*"] value to the new "all" keyword.
Both resource blocks and module blocks contain references to providers
that are expressed as short-form provider addresses ("aws.foo" rather than
"provider.aws.foo").
These rules call for those to be unwrapped as naked identifiers during
upgrade, rather than appearing as quoted strings. This also introduces
some further rules for other simpler meta-arguments that are required
for the test fixtures for this feature.
Some further rules are required here to deal with the meta-arguments we
accept inside these blocks, but this is good enough to pass through most
module blocks using the standard attribute-expression-based mapping.
Prior to v0.12 Terraform was liberal about these and allowed them to
mismatch, but now it's important to get this right so that resources
and resource instances can be used directly as object values, and so
we'll fix up any sloppy existing references so things keep working as
expected.
This is particularly important for the pattern of using count to create
conditional resources, since previously the "true" case would create one
instance and Terraform would accept an unindexed reference to that.
The reference syntax is not significantly changed, but there are some
minor additional restrictions on identifiers in HCL2 and as a special case
we need to rewrite references to data.terraform_remote_state .
Along with those mandatory upgrades, we will also switch references to
using normal index syntax where it's safe to do so, as part of
de-emphasizing the old strange integer attribute syntax (like foo.0.bar).
Users discovered that they could exploit some missing validation in
Terraform v0.11 and prior to treat block types as if they were attributes
and assign dynamic expressions to them, with some significant caveats and
gotchas resulting from the fact that this was never intended to work.
However, since such patterns are in use in the wild we'll convert them
to a dynamic block during upgrade. With only static analysis we must
unfortunately generate a very conservative, ugly dynamic block with
every possible argument set. Users ought to then clean up the generated
configuration after confirming which arguments are actually required.
If lookup is being used with only two arguments then it is equivalent to
index syntax and more readable that way, so we'll replace it.
Ideally we'd do similarly for element(...) here but sadly we cannot
because we can't prove in static analysis that the user is not relying
on the modulo wraparound behavior of that function.
We now have native language features for declaring tuples and objects,
which are the idiomatic way to construct sequence and mapping values that
can then be converted to list, set, and map types as needed.
In the old world, lists and maps could be created either using functions
in HIL or list/object constructs in HCL. Here we ensure that in the HCL
case we'll apply any required expression transformations to the individual
items within HCL's compound constructs.
The old parser was forgiving in allowing the use of block syntax where a
map attribute was expected, but the new parser is not (in order to allow
for dynamic map keys, for expressions, etc) and so the upgrade tool must
fix these to use attribute syntax.
This covers all of the expression node types in HIL's AST, and also
includes initial support for some of our top-level blocks so that we can
easily test that.
The initial implementations of the "variable" and "output" blocks are
pretty redundant and messy, so we can hopefully improve on these in a
later pass.
This function is the main functionality of this package. So far it just
deals with detecting and renaming JSON files that are mislabeled as
native syntax files. Other functionality will follow in later commits.
This package will do all of its work in-memory so that it can avoid making
partial updates and then failing, so we need to be able to load the
sources files from a particular directory into memory.
The upgrade process isn't idempotent, so we also attempt to detect
heuristically whether an upgrade has already been performed (can parse
with the new parser and has a version constraint that prevents versions
earlier than 0.12) so that the CLI tool that will eventually wrap this
will be able to produce a warning and prompt for confirmation in that
case.