It's not normally necessary to make explicit type conversions in Terraform
because the language implicitly converts as necessary, but explicit
conversions are useful in a few specialized cases:
- When defining output values for a reusable module, it may be desirable
to force a "cleaner" output type than would naturally arise from a
computation, such as forcing a string containing digits into a number.
- Our 0.12upgrade mechanism will use some of these to replace use of the
undocumented, hidden type conversion functions in HIL, and force
particular type interpretations in some tricky cases.
- We've found that type conversion functions can be useful as _temporary_
workarounds for bugs in Terraform and in providers where implicit type
conversion isn't working correctly or a type constraint isn't specified
precisely enough for the automatic conversion behavior.
These all follow the same convention of being named "to" followed by a
short type name. Since we've had a long-standing convention of running all
the words together in lowercase in function names, we stick to that here
even though some of these names are quite strange, because these should
be rarely-used functions anyway.
The sethaselement, setintersection, and setunion functions are defined in
the cty stdlib. Making them available in Terraform will make it easier to
work with sets, and complement the currently-Terraform-specific setproduct
function.
In the long run setproduct should probably move into the cty stdlib too,
but since it was submitted as a Terraform function originally we'll leave
it here now for simplicity's sake and reorganize later.
In our new world it produces either a set of a tuple type or a list of a
tuple type, depending on the given argument types.
The resulting collection's element tuple type is decided by the element
types of the given collections, allowing type information to propagate
even if unknown values are present.
This document was previously copied to the "Extending Terraform" section (in the
terraform-website repo), and the old URL was redirected so that the copy in
/guides can no longer be reached on the website. But the old copy of the file
remained, and now it runs the risk of confusing contributors, since the copy in
terraform-website/.../docs/extend is the more up-to-date version.
The AWS Go SDK automatically provides a default request retryer with exponential backoff that is invoked via setting `MaxRetries` or leaving it `nil` will default to 3. The terraform-aws-provider `config.Client()` sets `MaxRetries` to 0 unless explicitly configured above 0. Previously, we were not overriding this behavior by setting the configuration and therefore not invoking the default request retryer.
The default retryer already handles HTTP error codes above 500, including S3's InternalError response, so the extraneous handling can be removed. This will also start automatically retrying many additional cases, such as temporary networking issues or other retryable AWS service responses.
Changes:
* s3/backend: Add `max_retries` argument
* s3/backend: Enhance S3 NoSuchBucket error to include additional information
We missed this one on a previous pass of bringing in most of the cty
stdlib functions.
This will resolve#17625 by allowing conversion from Terraform's
conventional RFC 3339 timestamps into various other formats.
This function is similar to the template_file data source offered by the
template provider, but having it built in to the language makes it more
convenient to use, allowing templates to be rendered from files anywhere
an inline template would normally be allowed:
user_data = templatefile("${path.module}/userdata.tmpl", {
hostname = format("petserver%02d", count.index)
})
Unlike the template_file data source, this function allows values of any
type in its variables map, passing them through verbatim to the template.
Its tighter integration with Terraform also allows it to return better
error messages with source location information from the template itself.
The template_file data source was originally created to work around the
fact that HIL didn't have any support for map values at the time, and
even once map support was added it wasn't very usable. With HCL2
expressions, there's little reason left to use a data source to render
a template; the only remaining reason left to use template_file is to
render a template that is constructed dynamically during the Terraform
run, which is a very rare need.
This commit is a wide-ranging set of edits to the pages under
/docs/configuration. Among other things, it
- Separates style conventions out into their own page.
- Separates type constraints and conversion info into their own page.
- Conflates similar complex types a little more freely, since the distinction is
only relevant when restricting inputs for a reusable module or resource.
- Clarifies several concepts that confused me during edits.
* Upgrading to 2.0.0 of github.com/hashicorp/go-azure-helpers
* Support for authenticating using Azure CLI
* backend/azurerm: support for authenticating using the Azure CLI
This change enables a few related use cases:
* AWS has partitions outside Commercial, GovCloud (US), and China, which are the only endpoints automatically handled by the AWS Go SDK. DynamoDB locking and credential verification can not currently be enabled in those regions.
* Allows usage of any DynamoDB-compatible API for state locking
* Allows usage of any IAM/STS-compatible API for credential verification
* backend/azurerm: removing the `arm_` prefix from keys
* removing the deprecated fields test because the deprecation makes it fail
* authentication: support for custom resource manager endpoints
* Adding debug prefixes to the log statements
* adding acceptance tests for msi auth
* including the resource group name in the tests
* backend/azurerm: support for authenticating using a SAS Token
* resolving merge conflicts
* moving the defer to prior to the error
* backend/azurerm: support for authenticating via msi
* adding acceptance tests for msi auth
* including the resource group name in the tests
* support for using the test client via msi
* vendor updates
- updating to v21.3.0 of github.com/Azure/azure-sdk-for-go
- updating to v10.15.4 of github.com/Azure/go-autorest
- vendoring github.com/hashicorp/go-azure-helpers @ 0.1.1
* backend/azurerm: refactoring to use the new auth package
- refactoring the backend to use a shared client via the new auth package
- adding tests covering both Service Principal and Access Key auth
- support for authenticating using a proxy
- rewriting the backend documentation to include examples of both authentication types
* switching to use the build-in logging function
* documenting it's also possible to retrieve the access key from an env var
...and one other reference to the application data directory.
Context:
https://docs.microsoft.com/en-us/windows/desktop/shell/knownfolderid#folderid_roamingappdata
In newer Windows versions, the folder accessible as `%APPDATA%` (and via various
APIs) is actually at something like "documents and settings\user\application
data\roaming", while earlier versions omit the "\roaming" part of the path. This
means you can confuse people by referring to the "application data" directory by
its human name, because "roaming" is the real application data directory, but it
looks like a subdirectory of "application data".
Thus, it's less confusing to just use the `%APPDATA%` variable, with the added
benefit that you can copy and paste the path and it'll just work in most places.
If the user uses the auto-expire value in the backend/swift settings
then swift will automatically delete their Statefile which is likely
something the user doesn't want given how Terraform works.