It's important to preserve the provider address because during the destroy
phase of provider tests we'll use the references in the state to determine
which providers are required, and so without this attempts to override
the provider using the "provider" meta-argument can cause failures at
destroy time when the wrong provider gets selected.
(This is particularly acute in the google-beta provider tests because that
provider is _always_ used with provider = "google-beta" to override the
default behavior of using the normal "google" provider.)
The previous commit added a new flag to schema.Schema which is documented
to make a list with MaxItems: 1 be presented to Terraform Core as a single
value instead, giving a way to switch to non-list nested resources without
it being a breaking change for Terraform v0.11 users as long as it's done
prior to a provider's first v0.12-compatible release.
This is the implementation of that mechanism. It's intentionally
implemented as a suite of extra fixups rather than direct modifications to
existing shim code because we want to ensure that this has no effect
whatsoever on the result of a resource type that _isn't_ using AsSingle.
Although there is some small unit test coverage of the fixup steps here,
the primary testing for this is in the test provider since the integration
of all of these fixup steps in the correct order is the more important
result than any of the intermediate fixup steps.
This setting indicates that an attribute defined as TypeList or TypeSet
should be presented to Terraform Core as a single value instead when
running in Terraform v0.12 or later. It has no effect for Terraform v0.10
or v0.11.
This commit just introduces the setting without any associated behavior,
so it can be included in both the v0.12 and v0.11 branches. A subsequent
commit only to the v0.12 branch will introduce the behavior as part of
the protocol version 5 shims.
This will allow resources to return an unexpected change to set blocks
and attributes, otherwise we could mask these changes during
normalization.
Change the "plan" argument in normalizeNullValues to "preferDst" to more
accurately describe what the option is doing, since it no longer applies
only to PlanResourceChange.
This should be the final change from removing the flatmap normalization.
Since we're no longer trying to a consistent zero or null value in the
flatmap config, rather we're trying to maintain the previously applied
value, ReadResource also needs to apply the normalizeNullValues step in
order to prevent unexpected diffs.
This method was added early on when the diff was being applied as the
legacy code would have done, which is no longer the case. Everything
that normalizeFlatmapContainers does should be covered by the
combination of the initial diff.Apply and the normalizeNullValues on the
final cty.Value.
This makes some slight adjustments to the shape of the schema we
present to Terraform Core without affecting how it is consumed by the
SDK and thus the provider. This mechanism is designed specifically to
avoid changing how the schema is interpreted by the SDK itself or by the
provider, so that prior behavior can be preserved in Terraform v0.11 mode.
This also includes a new rule that Computed-only (i.e. not also Optional)
schemas _always_ map to attributes, because that is a better mapping of
the intent: they are object values to be used in expressions. Nested
blocks conceptually represent nested objects that are in some sense
independent of what they are embedded in, and so they cannot themselves be
computed.
This allows a provider developer slightly more control over how an SDK
schema is mapped into the Terraform configuration language, overriding
some default assumptions.
ConfigMode overrides the default assumption that a schema with
an Elem of type *Resource is to be mapped to configuration as a nested
block, allowing mapping as an attribute containing an object type instead.
These behaviors only apply when a provider is being used with Terraform
v0.12 or later. They are ignored altogether in Terraform v0.11 mode, to
preserve compatibility. We are adding these primarily to allow the v0.12
version of a resource type schema to be specified to match the prevailing
usage of it in existing configurations, in situations where the default
mapping to v0.12 concepts is not appropriate.
This commit adds only the fields themselves and the InternalValidate rules
for them. A subsequent commit for Terraform v0.12 will add the behavior
as part of the protocol version 5 shim layer.
As we've improved the cty.Value normalization, we need to remove
normalization procedures from the flatmap handling. Keeping the empty
containers in the flatmap will prevent unexpected nils from being added
to some schema configurations
Use objchange.NormalizeObjectFromLegacySDK to ensure that all objects
returned from the provider match what is expected based on the
configuration according to the schemas.
Providers were not strict (and were not forced to be) about customizing
the diff when a computed attribute needed to be updated during apply.
The fix we have in place to prevent loss of information during the
helper/schema apply process would add in single missing value back in.
The first place this was caught was when we attempt to fix up the
flatmapped attributes. The 1->0 count error is now better handled by our
cty.Value normalization step, so we can remove the special apply case
here altogether
The next place is in normalizeNullValues, and since the intent was to
re-insert missing zero-value lists and sets, adding a check for a length
of 0 protects us from adding in extra elements.
The new test fixture emulated common provider behavior of re-computing
values without customizing the diff. Since we can work around it, and
core will provider appropriate warnings, the shims should try to
maintain the legacy behavior.
The NewExtra values are stored outside the diff from plan, and the
original keys may not contain the ~ prefix. Adding the NewExtra back
into the diff with the mismatched key was causing an entire new set
element to be populated. Since this symbol isn't used to apply the diff
in helper/schema, we can simply strip them out.
The hcl2shims will always add in the timeouts block, because there's no
way to differentiate a null single block from an empty one in the
flatmapped state. Since we are only concerned with keeping the prior
timeouts value, always set the new value to null, and then copy over the
prior value if it exists.
When the user aborts input, it may end up as an unknown value, which
needs to be converted to null for PrepareConfig.
Allow PrepareConfig to accept null config values in order to fill in
missing defaults.
The new normalization should make preventing those changes unnecessary,
and will also prevent extra empty elements from being added when
resources are refreshed.
This mirrors the change made for providers, so that default values can
be inserted into the config by the backend implementation. This is only
the interface and method name changes, it does not yet add any default
values.
cty.Value.AsValueMap can return nil if called on an empty map or object.
The logic above was dealing with that case for maps, but object types
were falling through into this codepath and panicking when trying to
assign a new key into the nil dstMap.
This also includes a bonus fix where we were calling ty.ElementType in
a switch case that accepts object types. Object types don't have a single
element type, so we can't call ElementType on those (that also panics)
but we _can_ use the type of the value we selected from src to construct
our placeholder null value.
Due to the inprecision of our shimming from the legacy SDK type system to
the new Terraform Core type system, the legacy SDK produces a number of
inconsistencies that produce only minor quirky behavior or broken
edge-cases. To retain compatibility with those existing weird behaviors,
the legacy SDK opts out of our safety checks.
The intent here is to allow existing providers to continue to do their
previous unsafe behaviors for now, accepting that this will allow certain
quirky bugs from previous releases to persist, and then gradually migrate
away from the legacy SDK and remove this opt-out on a per-resource basis
over time.
As with the apply-time safety check opt-out, this is reserved only for
the legacy SDK and must not be used in any new SDK implementations. We
still include any inconsistencies as warnings in the logs as an aid to
anyone debugging weird behavior, so that they can see situations where
blame may be misplaced in the user-visible error messages.
Terraform core expects a sane state even when the provider returns an
error. Make sure at the prior state is always the default value to
return, and then alway attempt to process any state returned by
provider.Apply.
This was changed in the single attribute test cases, but the AttrPair
test is used a lot for data source. As far as tests are concerned, 0 and
unset should be treated equally for flatmapped collections.
Check attributes on null objects, and fill in unknowns. If we're
evaluating the object, it either means we are at the top level, or a
NestingSingle block was present, and in either case we need to treat the
attributes as null rather than the entire object.
Switch on the block types rather than Nesting, so we don't need add any
logic to change between List/Tuple or Map/Object when DynamicPseudoType
is involved.
The shim layer for the legacy SDK type system is not precise enough to
guarantee it will produce identical results between plan and apply. In
particular, values that are null during plan will often become zero-valued
during apply.
To avoid breaking those existing providers while still allowing us to
introduce this check in the future, we'll introduce a rather-hacky new
flag that allows the legacy SDK to signal that it is the legacy SDK and
thus disable the check.
Once we start phasing out the legacy SDK in favor of one that natively
understands our new type system, we can stop setting this flag and thus
get the additional safety of this check without breaking any
previously-released providers.
No other SDK is permitted to set this flag, and we will remove it if we
ever introduce protocol version 6 in future, assuming that any provider
supporting that protocol will always produce consistent results.
If set elements are computed, we can't be certain that they are actually
equal. Catch identical computed set hashes when they are added to the
set, and alter the set key slightly to keep the set counts correct.
In previous versions the interpolation string would be included in the
set, and different string values would cause the set to hash
differently, so this is change is only activated for the new protocol.
This turns it on at the last moment, and in one place for all uses of
helper/schema. There's no way to use the new protocol without calling
GetSchema, so we can be sure that any subsequent api calls have this set
when required.
Sets rely on diffs being complete for all elements, even when they are
unchanged. When encountering a DiffSuppressFunc inside a set the diffs
were being dropped entirely, possible causing set elements to be lost.
Previously we were using the type name requested in the import to select
the schema, but a provider is free to return additional objects of other
types as part of an import result, and so it's important that we perform
schema selection separately for each returned object.
If we don't do this, we get confusing downstream errors where the
resulting object decodes to the wrong type and breaks various invariants
expected by Terraform Core.
The testResourceImportOther test in the test provider didn't catch this
previously because it happened to have an identical schema to the other
resource type being imported. Now the schema is changed and also there's
a computed attribute we can set as part of the refresh phase to make sure
we're completing the Read call properly during import. Refresh was working
correctly, but we didn't have any tests for it as part of the import flow.
This checking helper is frequently used in provider tests for data
sources, as a shorthand to verify that an attribute of the data source
matches with the corresponding attribute on a managed resource.
Since we now leave empty collections null in more cases, this function is
sometimes effectively asked to verify that a given attribute is _unset_
in both the data source and the resource, so here we slightly adjust the
definition of the check to consider two nulls to be equal to one another,
which at this layer manifests as the keys not being present in the state
attributes map at all.
This check function didn't previously have tests, so this commit also adds
a basic suite of tests, including coverage for the new behavior.
While copyMissingValues was meant to re-insert empty values that were
null after apply, it turns out plan is sometimes not predictable as
well.
normalizeNullValue is meant to fix up any null/empty transitions between
to values, and be useful during plan as well. For plan the function only
concerns itself with individual, known values, and skips sets entirely.
The result of running with plan == true is that only changes between
empty and null collections should be fixed.
The new decoder is more precise, and unpacks the timeout block into a
single map, which ResourceTimeout.ConfigDecode was updated to handle.
We however still need to work with legacy versions of terraform, with
the old decoder.
With the new diff.Apply we can keep the diff mostly intact, but we need
turn off all RequiresNew flags so that the prior state is not removed
from the apply.
One quirky aspect of our import feature is that we allow the importer to
produce additional resources alongside the one that was imported, such as
to create separate rules for each rule of an imported security group.
Providers need to be able to set the types of these other resources since
they may not match the "main" resource type. They do this by calling
ResourceData.SetType, which in turn sets InstanceState.Ephemeral.Type.
In our shims here we therefore need to copy that out into our new TypeName
field so that the new core import code can see it and create the right
type in the state.
Testing this required a minor change to the test harness to allow the
ImportStateCheck function to see the resource type.