* Add creation test and simplify in-place test
* Add deletion test
* Start adding marking from state
Start storing paths that should be marked
when pulled out of state. Implements deep
copy for attr paths. This commit also includes some
comment noise from investigations, and fixing the diff test
* Fix apply stripping marks
* Expand diff tests
* Basic apply test
* Update comments on equality checks to clarify current understanding
* Add JSON serialization for sensitive paths
We need to serialize a slice of cty.Path values to be used to re-mark
the sensitive values of a resource instance when loading the state file.
Paths consist of a list of steps, each of which may be either getting an
attribute value by name, or indexing into a collection by string or
number.
To serialize these without building a complex parser for a compact
string form, we render a nested array of small objects, like so:
[
[
{ type: "get_attr", value: "foo" },
{ type: "index", value: { "type": "number", "value": 2 } }
]
]
The above example is equivalent to a path `foo[2]`.
* Format diffs with map types
Comparisons need unmarked values to operate on,
so create unmarked values for those operations. Additionally,
change diff to cover map types
* Remove debugging printing
* Fix bug with marking non-sensitive values
When pulling a sensitive value from state,
we were previously using those marks to remark
the planned new value, but that new value
might *not* be sensitive, so let's not do that
* Fix apply test
Apply was not passing the second state
through to the third pass at apply
* Consistency in checking for length of paths vs inspecting into value
* In apply, don't mark with before paths
* AttrPaths test coverage for DeepCopy
* Revert format changes
Reverts format changes in format/diff for this
branch so those changes can be discussed on a separate PR
* Refactor name of AttrPaths to AttrSensitivePaths
* Rename AttributePaths/attributePaths for naming consistency
Co-authored-by: Alisdair McDiarmid <alisdair@users.noreply.github.com>
Due to the fact that resources can transition between each modes, trying
to track the mode for a resource as a whole in state doesn't work,
because there may be instances with a mode different from the resource
as a whole. This is difficult for core to track, as this metadata being
changed as a side effect from multiple places often causes core to see
the incorrect mode when evaluating instances.
Since core can always determine the correct mode to evaluate from the
configuration, we don't need to interrogate the state to know the mode.
Once core no longer needs to reference EachMode from states, the
resource state can simply be a container for instances, and doesn't need
to try and track the "current" mode.
We need all module instance outputs to build the objects for evaluation,
but there is no need to copy all the resource instances along with that.
This allows us to only return the output states, with enough information
to connect them with their module instances.
We need to be able to reference all possible dependencies for ordering
when the configuration is no longer present, which means that absolute
addresses must be used. Since this is only to recreate the proper
ordering for instance destruction, only resources addresses need to be
listed rather than individual instance addresses.
Due to how often the state and plan types are referenced throughout
Terraform, there isn't a great way to switch them out gradually. As a
consequence, this huge commit gets us from the old world to a _compilable_
new world, but still has a large number of known test failures due to
key functionality being stubbed out.
The stubs here are for anything that interacts with providers, since we
now need to do the follow-up work to similarly replace the old
terraform.ResourceProvider interface with its replacement in the new
"providers" package. That work, along with work to fix the remaining
failing tests, will follow in subsequent commits.
The aim here was to replace all references to terraform.State and its
downstream types with states.State, terraform.Plan with plans.Plan,
state.State with statemgr.State, and switch to the new implementations of
the state and plan file formats. However, due to the number of times those
types are used, this also ended up affecting numerous other parts of core
such as terraform.Hook, the backend.Backend interface, and most of the CLI
commands.
Just as with 5861dbf3fc49b19587a31816eb06f511ab861bb4 before, I apologize
in advance to the person who inevitably just found this huge commit while
spelunking through the commit history.
The types here were originally written to allow us to defer decoding of
object values until schemas are available, but it turns out that this was
forcing us to defer decoding longer than necessary and potentially decode
the same value multiple times.
To avoid this, we create pairs of types to represent the encoded and
decoded versions and methods for moving between them. These types are
identical to one another apart from how the dynamic values are
represented.
Our previous state models in the "terraform" package had a few limitations
that are addressed here:
- Instance attributes were stored as map[string]string with dot-separated
keys representing traversals through a data structure. Now that we have
a full type system, it's preferable to store it as a real data
structure.
- The existing state structures skipped over the "resource" concept and
went straight to resource instance, requiring heuristics to decide
whether a particular resource should appear as a single object or as
a list of objects when used in configuration expressions.
- Related to the previous point, the state models also used incorrect
terminology where "ResourceState" was really a resource instance state
and "InstanceState" was really the state of a particular remote object
associated with an instance. These new models use the correct names for
each of these, introducing the idea of a "ResourceInstanceObject" as
the local record of a remote object associated with an instance.
This is a first pass at fleshing out a new model for state. Undoubtedly
there will be further iterations of this as we work on integrating these
new models into the "terraform" package.
These new model types no longer serve double-duty as a description of the
JSON state file format, since they are for in-memory use only. A
subsequent commit will introduce a separate package that deals with
persisting state to files and reloading those files later.