This disables the computed value check for `count` during the validation
pass. This enables partial support for #3888 or #1497: as long as the
value is non-computed during the plan, complex values will work in
counts.
**Notably, this allows data source values to be present in counts!**
The "count" value can be disabled during validation safely because we
can treat it as if any field that uses `count.index` is computed for
validation. We then validate a single instance (as if `count = 1`) just
to make sure all required fields are set.
Fixes#4789
This improves the validation that valid provider aliases are used.
Previously, we required that provider aliases be defined in every module
they're used. This isn't correct because the alias may be used in a
parent module and inherited.
This removes that validation and creates the validation that a provider
alias must be defined in the used module or _any parent_. This allows
inheritance to work properly.
We've always had this type of validation for aliases because we believe
its a good UX tradeoff: typo-ing an alias is really painful, so we
require declaration of alias usage. It may add a small burden to
declare, but since relatively few aliases are used, it improves the
scenario where a user fat-fingers an alias name.
We allow variables to have descriptions specified, as additional context
for a module user as to what should be provided for a given variable.
We previously lacked a similar mechanism for outputs. Since they too are
part of a module's public interface, it makes sense to be able to add
descriptions for these for symmetry's sake.
This change makes a "description" attribute valid within an "output"
configuration block and stores it within the configuration data structure,
but doesn't yet do anything further with it. For now this is useful only
for third-party tools that might parse a module's config to generate
user documentation; later we could expose the descriptions as part of
the "apply" output, but that is left for a separate change.
This is the limitation of all lifecycle attributes currently. Right now,
interpolations are allowed through and the user ends up thinking it
should work. We should give an error.
In the future it should be possible to support some minimal set of
interpolations (static variables, data sources even perhaps) but for now
let's validate that this doesn't work.
Set the default log package output to iotuil.Discard during tests if the
`-v` flag isn't set. If we are verbose, then apply the filter according
to the TF_LOG env variable.
This commit changes config parsing from weak decoding lists and maps
into []string and map[string]string respectively to decode into
[]interface{} and map[string]interface{} respectively. This is in order
to take advantage of the work integrated in #7082 to defeat the backward
compatibility features of the mapstructure library.
Test coverage of loading empty variables and validating their default
types against expectation.
This commit adds support for native list variables and outputs, building
up on the previous change to state. Interpolation functions now return
native lists in preference to StringList.
List variables are defined like this:
variable "test" {
# This can also be inferred
type = "list"
default = ["Hello", "World"]
}
output "test_out" {
value = "${var.a_list}"
}
This results in the following state:
```
...
"outputs": {
"test_out": [
"hello",
"world"
]
},
...
```
And the result of terraform output is as follows:
```
$ terraform output
test_out = [
hello
world
]
```
Using the output name, an xargs-friendly representation is output:
```
$ terraform output test_out
hello
world
```
The output command also supports indexing into the list (with
appropriate range checking and no wrapping):
```
$ terraform output test_out 1
world
```
Along with maps, list outputs from one module may be passed as variables
into another, removing the need for the `join(",", var.list_as_string)`
and `split(",", var.list_as_string)` which was previously necessary in
Terraform configuration.
This commit also updates the tests and implementations of built-in
interpolation functions to take and return native lists where
appropriate.
A backwards compatibility note: previously the concat interpolation
function was capable of concatenating either strings or lists. The
strings use case was deprectated a long time ago but still remained.
Because we cannot return `ast.TypeAny` from an interpolation function,
this use case is no longer supported for strings - `concat` is only
capable of concatenating lists. This should not be a huge issue - the
type checker picks up incorrect parameters, and the native HIL string
concatenation - or the `join` function - can be used to replicate the
missing behaviour.
This changes the representation of maps in the interpolator from the
dotted flatmap form of a string variable named "var.variablename.key"
per map element to use native HIL maps instead.
This involves porting some of the interpolation functions in order to
keep the tests green, and adding support for map outputs.
There is one backwards incompatibility: as a result of an implementation
detail of maps, one could access an indexed map variable using the
syntax "${var.variablename.key}".
This is no longer possible - instead HIL native syntax -
"${var.variablename["key"]}" must be used. This was previously
documented, (though not heavily used) so it must be noted as a backward
compatibility issue for Terraform 0.7.
Fixes an interpolation race that was occurring when a tainted destroy
node and a primary destroy node both tried to interpolate a computed
count in their config. Since they were sharing a pointer to the _same_
config, depending on how the race played out one of them could catch the
config uninterpolated and would then throw a syntax error.
The `Copy()` tree implemented for this fix can probably be used
elsewhere - basically we should copy the config whenever we drop nodes
into the graph - but for now I'm just applying it to the place that
fixes this bug.
Fixes#4982 - Includes a test covering that race condition.
Without this 12 line function it’s impossible to use any of the
Terraform code without the need for having the files on disk. As more
and more people are using (parts of) Terraform in other software, this
seems to be a very welcome addition. It has no negative impact on
Terraform itself whatsoever (the function is never called), but it
opens up a lot of other use cases.
Next to the single new function, I renamed the existing function (and
related tests) to better reflect what the function does. So now there
is a `LoadDir` function which calls `LoadFile` for each file, which
kind of made sense to me, especially when now adding a `LoadJSON`
function as well.
But of course if the rename is a problem, I can revert that part as
it’s not related to the added `LoadJSON` function.
Thanks!
builtin/providers/aws/tags_test.go:56: unrecognized printf verb 'i'
builtin/providers/aws/tags_test.go:59: unrecognized printf verb 'i'
config/config_test.go:101: possible formatting directive in Fatal call
config/config_test.go:157: possible formatting directive in Fatal call
config/module/get_file_test.go:91: missing argument for Fatalf(%s): format reads arg 1, have only 0 args
helper/schema/schema.go:341: arg v.Type for printf verb %s of wrong type: schema.ValueType
helper/schema/schema.go:656: missing argument for Errorf(%s): format reads arg 2, have only 1 args
helper/schema/schema.go:912: arg schema.Type for printf verb %s of wrong type: schema.ValueType
terraform/context.go:178: arg v.Type() for printf verb %s of wrong type: github.com/hashicorp/terraform/config.VariableType
terraform/context.go:486: arg c.Operation for printf verb %s of wrong type: terraform.walkOperation
terraform/diff_test.go💯 arg actual for printf verb %s of wrong type: terraform.DiffChangeType
terraform/diff_test.go:235: arg actual for printf verb %s of wrong type: terraform.DiffChangeType