* providers.Interface: rename ValidateDataSourceConfig to
ValidateDataResourceConfig
This PR came about after renaming ValidateResourceTypeConfig to
ValidateResourceConfig: I now understand that we'd called it the former
instead of the latter to indicate that the function wasn't necessarily
operating on a resource that actually exists. A possibly-more-accurate
renaming of both functions might then be ValidateManagedResourceConfig
and ValidateDataResourceConfig.
The next commit will update the protocol (v6 only) as well; these are in
separate commits for reviewers and will get squashed together before
merging.
* extend renaming to protov6
This is just a prototype to gather some feedback in our ongoing research
on integration testing of Terraform modules. The hope is that by having a
command integrated into Terraform itself it'll be easier for interested
module authors to give it a try, and also easier for us to iterate quickly
based on feedback without having to coordinate across multiple codebases.
Everything about this is subject to change even in future patch releases.
Since it's a CLI command rather than a configuration language feature it's
not using the language experiments mechanism, but generates a warning
similar to the one language experiments generate in order to be clear that
backward compatibility is not guaranteed.
As part of ongoing research into Terraform testing we'd like to use an
experimental feature to validate our current understanding that expressing
tests as part of the Terraform language, as opposed to in some other
language run alongside, is a good and viable way to write practical
module integration tests.
This initial experimental incarnation of that idea is implemented as a
provider, just because that's an easier extension point for research
purposes than a first-class language feature would be. Whether this would
ultimately emerge as a provider similar to this or as custom language
constructs will be a matter for future research, if this first
experiment confirms that tests written in the Terraform language are the
best direction to take.
The previous incarnation of this experiment was an externally-developed
provider apparentlymart/testing, listed on the Terraform Registry. That
helped with showing that there are some useful tests that we can write
in the Terraform language, but integrating such a provider into Terraform
will allow us to make use of it in the also-experimental "terraform test"
command, which will follow in subsequent commits, to see how this might
fit into a development workflow.
* Add support for plugin protocol v6
This PR turns on support for plugin protocol v6. A provider can
advertise itself as supporting protocol version 6 and terraform will
use the correct client.
Todo:
The "unmanaged" providers functionality does not support protocol
version, so at the moment terraform will continue to assume that
"unmanaged" providers are on protocol v5. This will require some
upstream work on go-plugin (I believe).
I would like to convert the builtin providers to use protocol v6 in a
future PR; however it is not necessary until we remove protocol v6.
* add e2e test for using both plugin protocol versions
- copied grpcwrap and made a version that returns protocol v6 provider
- copied the test provider, provider-simple, and made a version that's
using protocol v6 with the above fun
- added an e2etest
Remove the README that had old user-facing information, replacing
it with a doc.go that describes the package and points to the
plugin SDK for external consumers.
* providers.Interface: huge renamification
This commit renames a handful of functions in the providers.Interface to
match changes made in protocol v6. The following commit implements this
change across the rest of the codebase; I put this in a separate commit
for ease of reviewing and will squash these together when merging.
One noteworthy detail: protocol v6 removes the config from the
ValidateProviderConfigResponse, since it's never been used. I chose to
leave that in place in the interface until we deprecate support for
protocol v5 entirely.
Note that none of these changes impact current providers using protocol
v5; the protocol is unchanged. Only the translation layer between the
proto and terraform have changed.
It's pretty common to want to apply the various fmt.Fprint... functions
to our two output streams, and so to make that much less noisy at the
callsite here we have a small number of very thin wrappers around the
underlying fmt package functionality.
Although we're aiming to not have too much abstraction in this "terminal"
package, this seems justified in that it is only a very thin wrapper
around functionality that most Go programmers are already familiar with,
and so the risk of this causing any surprises is low and the improvement
to readability of callers seems worth it.
This is to allow convenient testing of functions that are designed to work
directly with *terminal.Streams or the individual stream objects inside.
Because the InputStream and OutputStream APIs expose directly an *os.File,
this does some extra work to set up OS-level pipes so we can capture the
output into local buffers to make test assertions against. The idea here
is to keep the tricky stuff we need for testing confined to the test
codepaths, so that the "real" codepaths don't end up needing to work
around abstractions that are otherwise unnecessary.
This is the first commit for plugin protocol v6. This is currently
unused (dead) code; future commits will add the necessary conversion
packages, extend configschema, and modify the providers.Interface.
The new plugin protocol includes the following changes:
- A new field has been added to Attribute: NestedType. This will be the
key new feature in plugin protocol v6
- Several massages were renamed for consistency with the verb-noun
pattern seen in _most_ messages.
- The prepared_config has been removed from PrepareProviderConfig
(renamed ValidateProviderConfig), as it has never been used.
- The provisioner service has been removed entirely. This has no impact
on built-in provisioners. 3rd party provisioners are not supported by
the SDK and are not included in this protocol at all.
This is a helper package that creates a very thin abstraction over
terminal setup, with the main goal being to deal with all of the extra
setup we need to do in order to get a UTF-8-supporting virtual terminal
on a Windows system.
Previously we were expecting that the *hcl.File would always be non-nil,
even in error cases. That isn't always true, so now we'll be more robust
about it and explicitly return an empty locks object in that case, along
with the error diagnostics.
In particular this avoids a panic in a strange situation where the user
created a directory where the lock file would normally go. There's no
meaning to such a directory, so it would always be a mistake and so now
we'll return an error message about it, rather than panicking as before.
The error message for the situation where the lock file is a directory is
currently not very specific, but since it's HCL responsible for generating
that message we can't really fix that at this layer. Perhaps in future
we can change HCL to have a specialized error message for that particular
error situation, but for the sake of this commit the goal is only to
stop the panic and return a normal error message.
If a user forgets to specify the source address for a provider, Terraform
will assume they meant a provider in the registry.terraform.io/hashicorp/
namespace. If that ultimately doesn't exist, we'll now try to see if
there's some other provider source address recorded in the registry's
legacy provider lookup table, and suggest it if so.
The error message here is a terse one addressed primarily to folks who are
already somewhat familiar with provider source addresses and how to
specify them. Terraform v0.13 had a more elaborate version of this error
message which directed the user to try the v0.13 automatic upgrade tool,
but we no longer have that available in v0.14 and later so the user must
make the fix themselves.
The temporary directory on some systems (most notably MacOS) contains
symlinks, which would not be recorded by the installer. In order to make
these paths comparable in the tests we need to eval the symlinks in
the paths before giving them to the installer.
When logging is turned on, panicwrap will still see provider crashes and
falsely report them as core crashes, hiding the formatted provider
error. We can trick panicwrap by slightly obfuscating the error line.
When rendering a set of version constraints to a string, we normalize
partially-constrained versions. This means converting a version
like 2.68.* to 2.68.0.
Prior to this commit, this normalization was done after deduplication.
This could result in a version constraints string with duplicate
entries, if multiple partially-constrained versions are equivalent. This
commit fixes this by normalizing before deduplicating and sorting.
Previously we were only verifying locked hashes for local archive zip
files, but if we have non-ziphash hashes available then we can and should
also verify that a local directory matches at least one of them.
This does mean that folks using filesystem mirrors but yet also running
Terraform across multiple platforms will need to take some extra care to
ensure the hashes pass on all relevant platforms, which could mean using
"terraform providers lock" to pre-seed their lock files with hashes across
all platforms, or could mean using the "packed" directory layout for the
filesystem mirror so that Terraform will end up in the install-from-archive
codepath instead of this install-from-directory codepath, and can thus
verify ziphash too.
(There's no additional documentation about the above here because there's
already general information about this in the lock file documentation
due to some similar -- though not identical -- situations with network
mirrors.)
We previously had some tests for some happy paths and a few specific
failures into an empty directory with no existing locks, but we didn't
have tests for the installer respecting existing lock file entries.
This is a start on a more exhaustive set of tests for the installer,
aiming to visit as many of the possible codepaths as we can reasonably
test using this mocking strategy. (Some other codepaths require different
underlying source implementations, etc, so we'll have to visit those in
other tests separately.)
This won't be a typical usage pattern for normal code, but will be useful
for tests that need to work with locks as input so that they don't need to
write out a temporary file on disk just to read it back in immediately.