Add a method for checking if the From and To addresses in a move
statement are only changing the indexes of modules relative to the
statement module.
This is needed because move statement nested within the module will be
able to match against both the From and To addresses, causing cycles in
the order of move operations.
When applying module `moved` statements by iterating through modules in
state, we previously required an exact match from the `moved`
statement's `from` field and the module address. This permitted moving
resources directly inside a module, but did not recur into module calls
within those moved modules.
This commit moves that exact match requirement so that it only applies
to `moved` statements targeting resources. In turn this allows nested
modules to be moved.
Resource dependencies are by nature an unordered collection, but they're
persisted to state as a JSON array (in random order). This makes a mess for
`terraform apply -refresh-only`, which sees the new random order as a change
that requires the user to approve a state update.
(As an additional problem on top of that, the user interface for refresh-only
runs doesn't expect to see that as a type of change, so it says "no changes!
would you like to update to reflect these detected changes?")
This commit changes `ResourceInstanceObject.Encode()` to sort the in-memory
slice of dependencies (lexically, by address) before passing it on to be
compared and persisted. This appears to fix the observed UI issues with a
minimum of logic changes.
As the cloud e2e tests evolved some common patters became apparent. This
standardizes and consolidates the patterns into a common test runner
that takes the table tests and runs them in parallel. Some tests also
needed to be converted to utilize table tests.
Previously we would only ever add new lock entries or update existing
ones. However, it's possible that over time a module may _cease_ using
a particular provider, at which point we ought to remove it from the lock
file so that operations won't fail when seeing that the provider cache
directory is inconsistent with the lock file.
Now the provider installer (EnsureProviderVersions) will remove any lock
file entries that relate to providers not included in the given
requirements, which therefore makes the resulting lock file properly match
the set of packages the installer wrote into the cache.
This does potentially mean that someone could inadvertently defeat the
lock by removing a provider dependency, running "terraform init", then
undoing that removal, and finally running "terraform init" again. However,
that seems relatively unlikely compared to the likelihood of removing
a provider and keeping it removed, and in the event it _did_ happen the
changes to the lock entry for that provider would be visible in the diff
of the provider lock file as usual, and so could be noticed in code
review just as for any other change to dependencies.
When showing a saved plan, we do not need to check the state lineage
against current state, because the plan cannot be applied. This is
relevant when plan and apply specify a `-state` argument to choose a
non-default state file. In this case, the stored prior state in the plan
will not match the default state file, so a lineage check will always
error.
instances.Set is only used after all instances have been processes, so
it should therefor only handle known instances and not panic when given
an address that traverses an unexpanded module.
Running tests in parallel can help speed up overall test execution. Go
blocks parent tests while child tests run, so it does not fully fan out
as you might expect. It is noticably faster, though. Running 4 or more
concurrent processes knocks over a minute off the total execution time.
Revert the evaluation change from #29862.
While returning a dynamic value for all expanded resources during
validation is not optimal, trying to work around this using unknown maps
and lists is causing other undesirable behaviors during evaluation.
Earlier versions of this code allowed "ref" to take any value that would
be accepted by "git checkout" as a valid target of a symbolic ref. We
inadvertently accepted a breaking change to upstream go-getter that broke
that as part of introducing a shallow clone optimization, because shallow
clone requires selecting a single branch.
To restore the previous capabilities while retaining the "depth" argument,
here we accept a compromise where "ref" has the stronger requirement of
being a valid named ref in the remote repository if and only if "depth"
is set to a value greater than zero. If depth isn't set or is less than
one, we will do the old behavior of just cloning all of the refs in the
remote repository in full and then switching to refer to the selected
branch, tag, or naked commit ID as a separate step.
This includes a heuristic to generate an additional error message hint if
we get an error from "git clone" and it looks like the user might've been
trying to use "depth" and "ref=COMMIT" together. We can't recognize that
error accurately because it's only reported as human-oriented git command
output, but this heuristic should hopefully minimize situations where we
show it inappropriately.
For now this is a change in the Terraform repository directly, so that we
can expedite the fix to an already-reported regression. After this is
released I tend to also submit a similar set of changes to upstream
go-getter, at which point we can revert Terraform to using the upstream
getter.GitGetter instead of our own local fork.
This is a pragmatic temporary solution to allow us to more quickly resolve
an upstream regression in go-getter locally within Terraform, so that the
work to upstream it for other callers can happen asynchronously and with
less time pressure.
This commit doesn't yet include any changes to address the bug, and
instead aims to be functionally equivalent to getter.GitGetter. A
subsequent commit will then address the regression, so that the diff of
that commit will be easier to apply later to the upstream to get the same
effect there.
A regression introduced in d72a413ef8
The comment explains, but TLDR: The remote backend actually *depended*
on being able to write it's backend state even though an 'error'
occurred (no workspaces).
This is an explicit technical debt note that our plan renderer isn't able
to give a fully-specific hint in this particular case of deletion reason.
This reason code means that at least one of the module instance keys in
the resource's module path doesn't match an instance declared in the
configuration, but the plan data structure doesn't retain enough
information to know which is the first step in the path which refers to
a missing instance, and so we just always return the whole thing.
This would be confusing if we return module.foo[0].module.bar not being
in the configuration as a result of module.foo not using "count"; it would
be better to say "module.foo[0] is not in the configuration" instead.
It would be most ideal to handle all of the different situations that
ResourceInstanceDeleteBecauseWrongRepetition's rendering does, so that we
can go further and explain exactly _why_ that module instance isn't
declared anymore.
We can do neither of those things today because only the Terraform Core
"expander" component knows that information, and we've discarded that
by the time we get to rendering a plan. To fix this one day would require
preserving in the plan information about which module instances are
declared, as a separate sidecar data structure from which resource
instances we're taking actions on, and then using that to identify which
step in addr.Module here first selects an invalid instance.
Previously we were treating it as a programming error to ask for the
instances of a resource inside an instance of a module that is declared
but whose declaration doesn't include the given instance key.
However, that's actually a valid situation which can arise if, for
example, the user has changed the repetition/expansion mode for an
existing module call and so now all of the resource instances addresses it
previously contained are "orphaned".
To represent that, we'll instead say that an invalid instance key of a
declared module behaves as if it contains no resource instances at all,
regardless of the configurations of any resources nested inside. This
then gives the result needed to successfully detect all of the former
resource instances as "orphaned" and plan to destroy them.
However, this then introduces a new case for
NodePlannableResourceInstanceOrphan.deleteActionReason to deal with: the
resource configuration still exists (because configuration isn't aware of
individual module/resource instances) but the module instance does not.
This actually allows us to resolve, at least partially, a previous missing
piece of explaining to the user why the resource instances are planned
for deletion in that case, finally allowing us to be explicit to the user
that it's because of the module instance being removed, which
internally we call plans.ResourceInstanceDeleteBecauseNoModule.
Co-authored-by: Alisdair McDiarmid <alisdair@users.noreply.github.com>
As explained in the changes: The 'enhanced' backend terminology, which
only truly pertains to the 'remote' backend with a single API (Terraform
Cloud/Enterprise's), has been found to be a confusing vestige which need
only be explained in the context of the 'remote' backend.
These changes reorient the explanation(s) of backends to pertain more
directly to their primary purpose, which is storage of state snapshots
(and not implementing operations).
That Terraform operations are still _implemented_ by the literal
`Backend` and `Enhanced` interfaces is inconsequential a user of
Terraform, an internal detail.
Some function errors include values derived from arguments. This commit
is the result of a manual audit of these errors, which resulted in:
- Adding a helper function to redact sensitive values;
- Applying that helper function where errors include values derived from
possibly-sensitive arguments;
- Cleaning up other errors which need not include those values, or were
otherwise incorrect.
When migrating from an explicit local backend to Terraform Cloud, we ask
if you want to migrate the state. If there is no state to migrate we
should not ask if they want to migrate the emptiness.
When going from a local backend to Terraform Cloud, if you skip the
`terraform init` and run `terraform apply` this will give the user more
clear instructions.
When terraform detects that a user has no workspaces that map to their current configuration, it will prompt the user to create a new workspace and enter a value name. If the user ignores the prompt and exits it, the legacy backend (terraform.tfstate) will be left in a awkward state:
1. This saved backend config will show a diff for the JSON attributes "serial", "tags" and "hash"
2. "Terraform workspace list" will show an empty list
3. "Terraform apply" will run successfully using the previous workspace, from the previous config, not the one from the current saved backend config
4. The cloud config is not reflective of the current working directory
Solution: If the user exits the prompt, the saved backend config should not be updated because they did not select a new workspace. They are back at the beginning where they are force to re run the init cmd again before proceeding with new changes.
Previously we ended up losing all of the error message detail produced by
the registry address parser, because we treated any registry address
failure as cause to parse the address as a go-getter-style remote address
instead.
That led to terrible feedback in the situation where the user _was_
trying to write a module address but it was invalid in some way.
Although we can't really tighten this up in the default case due to our
compatibility promises, it's never been valid to use the "version"
argument with anything other than a registry address and so as a
compromise here we'll use the presence of "version" as a heuristic for
user intent to parse the source address as a registry address, and thus
we can return a registry-address-specific error message in that case and
thus give more direct feedback about what was wrong.
This unfortunately won't help someone trying to install from the registry
_without_ a version constraint, but I didn't want to let perfect be the
enemy of the good here, particularly since we recommend using version
constraints with registry modules anyway; indeed, that's one of the main
benefits of using a registry rather than a remote source directly.
Object values returned from providers have their attributes marked as
sensitive based on the provider schema. This was not fully implemented
for nested attribute types, which is corrected in this commit.
Resource instances removed from the configuration would previously use
the implied provider address. This is correct for default providers, but
incorrect for those from other namespaces or hosts. The fix here is to
use the stored provider config if it is present.
We cannot programmatically migrate workspaces to Terraform Cloud without
prompts, so `-input=false` should not be allowed in those cases.
There are 4 scenarios where we need input from a user to complete
migrating workspaces to Terraform Cloud.
1.) Migrate from a single local workspace to Terraform Cloud
* Terraform config for a local backend. Implicit local (no backend
specified) is fine.
* `terraform init` and `terraform apply`
* Change the Terraform config to use the cloud block
* `terraform init -input=false`
* You should now see an error message
2.) Migrate from a remote backend with a prefix to Terraform Cloud with
tags
* Create a workspace in Terraform Cloud manually. The name should
include a prefix, like "app-one"
* Have the terraform config use `backend "remote"` with a prefix set to
"app-"
* `terraform init` and `terraform apply`
* Update the Terraform config to use a cloud block with `tags
= ["app"]`. There should not be a prefix defined in the config now.
* `terraform init -input=false`
* You should now see an error message
3.) Migrate from multiple local workspaces to a single Terraform Cloud
workspace
* Create one or many local workspaces
* `terraform init` and `terraform apply` in each
* Change the Terraform config to use the cloud block
* `terraform init -input=false`
* You should now see an error message
4.) Migrate to Terraform Cloud and ask for a workspace name
* Create several local workspaces
* `terraform init` and `terraform apply` in each
* Change the Terraform config to use the cloud block with tags
* `terraform init -input=false`
* You should now see an error message
* Create a function for logic that assigns value to initReason var after changing backend configuration
Create func determineInitReason() for logic block that assigns value to initReason var after changing backend/cloud configuration block or migrating to a different type of backend configuration. Also clarify 'cloud' configuration block message to say 'Terraform Cloud configuration block has changed' instead of 'Terraform Cloud configuration has changed'.
Some of the wording here needed adjusting with the change that backends
largely reflect state snapshot storage (removing 'enhanced'
designation), and that a 'backend' is not necessarily always present.
This fixes an issue where a user could not disable initialization of the
'cloud' configuration block (As is possible with -backend=false), as
well as add some syntactic sugar around -backend by adding a mutually
exclusive -cloud alias.
Unchanged elements in nested attributes backed by sets were previously
misrendered as empty objects. This commit removes the additional
brackets and adds a count of unchanged elements.
The specialized Terraform Cloud migration process asks right up top
whether the user wants to migrate state, because there are various other
questions contingent on that answer.
Therefore we ought to just honor their earlier answer when we get to the
point of actually doing the state migration, rather than prompting again.
This is tricky because we're otherwise just reusing a codepath that's
common to both modes. Hopefully we can find a better way to do this in
a later commit, but for the moment our main motivation is minimizing risk
to the very next release.
There are a few command line options for "terraform init" which are only
relevant when working with traditional backends, with the Cloud
integration previously just mostly ignoring them, or sometimes misbehaving
slightly due to them creating an unreasonable situation.
Now we'll catch these and return explicit errors, in order to be clear
that these options are not needed nor supported in Cloud mode.
This just gives a little extra information to work with when trying to
understand why a test failed. It doesn't change what any of the tests are
actually trying to test.
This aims to encapsulate the somewhat-weird logic we currently use to
distinguish between the various "terraform init" situations involving
Terraform Cloud mode, in the hope of making codepaths that branch based
on this slightly easier to read.
This isn't yet used, but uses of it will follow in subsequent commits.
This pull request focuses on removing the prompt to rename the default
workspace when it is empty. Functionality already exists to not migrate
an empty workspace. This commit adds some clarifying language in the
comment where we do the evaluation to know whether to ask for a new name
or not. I also added an end to end test, which I should have added to
begin with.
Given: You have multiple explicit local workspaces, and the `default`
workspace is empty.
When: You migrate the workspaces to Terraform Cloud.
Then: Terraform should _not_ ask for a workspace to migrate the
`default` workspace to in Terraform Cloud.
All run variables remain encoded as strings in the API but will now be expressed as an HCL value to be evaluated correctly by the remote terraform. Previously, only strings were supported.
Examples:
string: `"quoted literal"` (strings must be quoted)
map: `{ foo = "bar" }`
list: `["foo", "bar"]`
bool: `true`
null: `null`
number: `0.0001`
This requires the API to anticipate that all run variables will be HCL values
Error diags from c.installModules() no longer cause getModules() to exit early.
Whether installModules completed successfully, errored, or was cancelled, we
try to update the manifest as best we can, preferring incomplete information
to none.
Earlier work to make "terraform init" interruptible made the getproviders
package context-aware in order to allow provider installation to be cancelled.
Here we make a similar change for module installation, which is now also
cancellable with SIGINT. This involves plumbing context through initwd and
getmodules. Functions which can make network requests now include a context
parameter whose cancellation cancels those requests.
Since the module installation code is shared, "terraform get" is now
also interruptible during module installation.
* convert uses of worspaces.operations into workspaces.executionMode
The cloud package currently uses a deprecated API on workspaces to determine a workspace's execution mode.
Deprecated: Operations (boolean)
New hotness: Execution mode (string - "local", "remote", or "agent")
More details: https://www.terraform.io/docs/cloud/api/workspaces.html#request-body
All uses of Operations field coming from the client (within the cloud package) should be converted to the appropriate ExecutionMode equivalent.
Also, we need to update all acknowledgment of operations field on the tests that are testing the behavior of workspaces.
Co-authored-by: Nick Fagerlund <nick.fagerlund@gmail.com>
Co-authored-by: Nick Fagerlund <nick.fagerlund@gmail.com>
For Terraform Cloud users using the 'remote' backend, the existing
'pattern' prompt should work just fine - but because their workspaces
are already present in TFC, the 'migration' here is really just
realigning their local workspaces with Terraform Cloud. Instead of
forcing users to do the mental gymnastics of what it means to migrate
from 'prefix' - and because their remote workspaces probably already exist and
already conform to Terraform Cloud's naming concerns - streamline the
process for them and calculate the necessary pattern to migrate as-is,
without any user intervention necessary.
After migrating to TFC with renamed workspaces, automatically select
what was the previous current workspace on behalf of the user. We don't
need to make the user reselect.
Note these change do break the internal/cloud/e2e tests; they are in a
sad state that needs adjusting anyway, so I'm not updating them for
these changes at this time.
The Meta.backend_C_r_S_unchanged() method was sadly a bit of a mess.
It seems to have originally been used as a method to be called
when the backend is not changing, with an extra assumption that if the
configured backend's hash doesn't match the one in state, surely the
hash should just be updated as an option might have been moved to
command line flags.
However, this function was used throughout this file as 'the method to
load the initialized (but not necessarily configured) backend',
regardless of whether or not it is the same (unchanged). This is in
addition to Meta.backendFromState(), which is used to load the same
thing except in the main codepath of 'init -backend=false'.
These changes separate the concerns of backend_C_r_S_unchanged() by
1) Fetching the saved backend (savedBackend())
2) Updating the hash value in the backend cache when appropriate (either
by leaving it to the caller to do themselves or by calling
updateSavedupdateSavedBackendHash())
This allows migration codepaths to *not* update the hash value until
after a migration has successfully taken place.