The formatter in `command/format/state.go`, when formatting a resource
with an aliased provider, was looking for a schema with the alias (ie,
test.foo), but the schemas are only listed by provider type (test).
Update the state formatter to lookup schemas by provider type only.
Some of the show tests (and a couple others) were not properly cleaning
up the created tmpdirs, so I fixed those. Also, the show tests are using
a statefile named `state.tfstate`, but were not passing that path to the
show command, so we were getting some false positives (a `show` command
that returns `no state` exits 0).
Fixes#21462
When warnings appear in isolation (not accompanied by an error) it's
reasonable to want to defer resolving them for a while because they are
not actually blocking immediate work.
However, our warning messages tend to be long by default in order to
include all of the necessary context to understand the implications of
the warning, and that can make them overwhelming when combined with other
output.
As a compromise, this adds a new CLI option -compact-warnings which is
supported for all the main operation commands and which uses a more
compact format to print out warnings as long as they aren't also
accompanied by errors.
The default remains unchanged except that the threshold for consolidating
warning messages is reduced to one so that we'll now only show one of
each distinct warning summary.
Full warning messages are always shown if there's at least one error
included in the diagnostic set too, because in that case the warning
message could contain additional context to help understand the error.
* huge change to weave new addrs.Provider into addrs.ProviderConfig
* terraform: do not include an empty string in the returned Providers /
Provisioners
- Fixed a minor bug where results included an extra empty string
We have a special treatment for multi-line strings that are being updated
in-place where we show them across multiple lines in the plan output, but
we didn't use that same treatment for rendering multi-line strings in
isolation such as when they are being added for the first time.
Here we detect when we're rendering a multi-line string in a no-change
situation and render it using the diff renderer instead, using the same
value for old and new and thus producing a multi-line result without any
diff markers at all.
This improves consistency between the change and no-change cases, and
makes multi-line strings (such as YAML in block mode) readable in all
cases.
This "Plan" type, along with the other types it directly or indirectly
embeds and the associated functions, are adaptations of the
flatmap-oriented plan renderer logic from Terraform 0.11 and prior.
The current diff rendering logic is in diff.go, and so the contents of the
plan.go file are defunct apart from the DiffActionSymbol function that
both implementations share. Therefore here we move DiffActionSymbol into
diff.go and then remove plan.go entirely, in the interests of dead code
removal.
Previously we were using the experimental HCL 2 repository, but now we'll
shift over to the v2 import path within the main HCL repository as part of
actually releasing HCL 2.0 as stable.
This is a mechanical search/replace to the new import paths. It also
switches to the v2.0.0 release of HCL, which includes some new code that
Terraform didn't previously have but should not change any behavior that
matters for Terraform's purposes.
For the moment the experimental HCL2 repository is still an indirect
dependency via terraform-config-inspect, so it remains in our go.sum and
vendor directories for the moment. Because terraform-config-inspect uses
a much smaller subset of the HCL2 functionality, this does still manage
to prune the vendor directory a little. A subsequent release of
terraform-config-inspect should allow us to completely remove that old
repository in a future commit.
cty now guarantees that sets of primitive values will iterate in a
reasonable order. Previously it was the caller's responsibility to deal
with that, but we invariably neglected to do so, causing inconsistent
ordering. Since cty prioritizes consistent behavior over performance, it
now imposes its own sort on set elements as part of iterating over them so
that calling applications don't have to worry so much about it.
This change also causes cty to consistently push unknown and null values
in sets to the end of iteration, where before that was undefined. This
means that our diff output will now consistently list additions before
removals when showing sets, rather than the ordering being undefined as
before.
The ordering of known, non-null, non-primitive values is still not
contractually fixed but remains consistent for a particular version of
cty.
When rendering the diff, the NoOp changes should come from the LCS
sequence, rather than the new sequence. The two indexes will not align
in many cases, adding the wrong new object or indexing out of bounds.
In study of existing providers we've found a pattern we werent previously
accounting for of using a nested block type to represent a group of
arguments that relate to a particular feature that is always enabled but
where it improves configuration readability to group all of its settings
together in a nested block.
The existing NestingSingle was not a good fit for this because it is
designed under the assumption that the presence or absence of the block
has some significance in enabling or disabling the relevant feature, and
so for these always-active cases we'd generate a misleading plan where
the settings for the feature appear totally absent, rather than showing
the default values that will be selected.
NestingGroup is, therefore, a slight variation of NestingSingle where
presence vs. absence of the block is not distinguishable (it's never null)
and instead its contents are treated as unset when the block is absent.
This then in turn causes any default values associated with the nested
arguments to be honored and displayed in the plan whenever the block is
not explicitly configured.
The current SDK cannot activate this mode, but that's okay because its
"legacy type system" opt-out flag allows it to force a block to be
processed in this way anyway. We're adding this now so that we can
introduce the feature in a future SDK without causing a breaking change
to the protocol, since the set of possible block nesting modes is not
extensible.
Due to these tests happening in the wrong order, removing an object from
the end of a sequence of objects would previously cause a bounds-check
panic.
Rather than a more severe rework of the logic here, for now we'll just
introduce an extra precondition to prevent the panic. The code that
follows already handles the case where there _is_ no new object (i.e. the
"old" object is being deleted) as long as we're able to pass through this
type-checking logic.
The new "JSON list of objects - removing item" test covers this problem
by rendering a diff for an object being removed from the end of a list
of objects within a JSON value.
Our initial prototype of new-style diff rendering excluded this because
the old SDK has no support for this construct. However, we want to be able
to introduce this construct in the new SDK without breaking compatibility
with existing versions of Terraform Core, so we need to implement it now
so it's ready to be used once the SDK implements it.
The key associated with each block allows us to properly correlate the
items to recognize the difference between an in-place update of an
existing block and the addition/deletion of a block.
Our null-to-empty normalization was previously assuming these would always
be collection types, but that isn't true when a block contains something
dynamic since we must then use tuple or object types instead to properly
represent all of the individual element types.
We use cty a little differently when a nested list block contains a
dynamically-typed attribute: it appears as a tuple value instead of a
list value so that we can retain the individual types of each element.
Here we introduce a test for that case, but doing so required also making
the runTestCases function handle types in a stricter way so that it will
produce planned values that match how Terraform Core would do it,
including the necessary late-bound type information for the
dynamically-typed attribute.
We are now allowing the legacy SDK to opt out of the safety checks we try
to do after plan and apply, and so in such cases the before/after values
in planned changes may be inconsistent with our usual rules.
To avoid adding lots of extra complexity to the diff renderer to deal with
these situations, instead we'll normalize the handling of nested blocks
prior to using these values.
In the long run it'd be better to do this normalization at the source,
immediately after we receive an object from a provider using the opt-out,
but we're doing this at the outermost layer for now to avoid risking
unintended impacts on other Terraform Core components when we're just
about to enter the beta phase of the v0.12.0 release cycle.
Without using absolute paths any module info is lost in the output. And the attributes were randomly ordered and so changed between different executions of the command.
When HCL encounters an error during expression evaluation, it annotates
its diagnostics with information about the expression that was being
evaluated and the EvalContext it was evaluated in.
This gives us enough information to show helpful hints to the user about
the final values of any reference expressions that are present in the
expression, which is very useful extra context for expressions that get
evaluated multiple times, such as:
- Any expression in a block with "count" or "for_each" set
- The sub-expressions within a "for" expression
We used to treat the "id" attribute of a resource as special and elevate
it into its own struct field "ID" in the state, but the new state format
and provider protocol treats it just as any other attribute.
However, it's still useful to show the value of a single identifying
attribute when there isn't room in the UI for showing all of the
attributes, and so here we take a new strategy of considering "id" along
with some other conventional names as special only in the UI layer.
This new heuristic approach can be adjusted over time as new provider
patterns emerge, but for now it covers some common conventions we've seen
in real providers.
With that said, since all existing providers made for Terraform versions
prior to v0.12 were forced to set "id", we won't see any use of other
attributes here until providers are updated to remove the placeholder
ids they were generating in cases where an id was not actually relevant
but was forced by the old protocol. At that point the UX should be
improved by showing a more relevant attribute instead.
We now also allow for the possibility of no id at all, since that is valid
for resources that exist only within the Terraform state, like the ones
from the "random" and "tls" providers.
In all real cases the schemas should be populated here, but we don't want
to panic in UI rendering code if there's a bug here.
This can also be tripped up by tests with incomplete mocks. It's
unfortunate that this can therefore mask some problems in tests, but tests
can protect against it by asserting on specific output text rather than
just assuming that a zero exit status is a pass.
Added a very simple test with state and schema.
TODO: if tests are added we should test using golden files (and example
state files, instead of strings). This seemed unnecessary with the
simple test cases.
Previously we used a single plan action "Replace" to represent both the
destroy-before-create and the create-before-destroy variants of replacing.
However, this forces the apply graph builder to jump through a lot of
hoops to figure out which nodes need it forced on and rebuild parts of
the graph to represent that.
If we instead decide between these two cases at plan time, the actual
determination of it is more straightforward because each resource is
represented by only one node in the plan graph, and then we can ensure
we put the right nodes in the graph during DiffTransformer and thus avoid
the logic for dealing with deposed instances being spread across various
different transformers and node types.
As a nice side-effect, this also allows us to show the difference between
destroy-then-create and create-then-destroy in the rendered diff in the
CLI, although this change doesn't fully implement that yet.
We'll now show an "update" symbol prior to the argument to this synthetic
jsonencode(...) call, for consistency with how we show nested values in
other cases and to attach a verb to any "# forces replacement".
We'll also show a special form in the case where the value seems to differ
only in whitespace, so users can understand what's going on in that
hopefully-rare situation, particularly if those whitespace-only changes
end up forcing us to replace a remote object.
Since our own syntax for primitive values is similar to that of JSON, and
since we permit automatic conversions from number and bool to string, we
must do this special JSON value diff formatting only if the value is a
JSON array or object to avoid confusing results.
Because so far we've not supported dynamically-typed complex data
structures, several providers have used strings containing JSON to stand
in for these.
In order to get a readable diff in those cases, we'll recognize situations
where old and new are both JSON and present a diff of the effective value
of the JSON, using a faux call to the jsonencode(...) function to indicate
when we've done so.
This is a bit of a "cute" heuristic, but is important at least for now
until we can migrate away from that practice of passing large JSON strings
to providers and use dynamically-typed attributes instead.
This extra comment line gives us a place to show the full resource address
(since the block header line only includes type and name) and also allows
us to explain in long form the meaning of the change icon on the following
line.
This is a light adaptation of our earlier prototype of structural diff
rendering, as a starting point for what we'll actually ship. This is not
consistent with the latest mocks, so will need some additional work before
it is ready, but integrating this allows us to at least see the plan
contents while fixing up remaining issues elsewhere.
Previously we just left these out of the plan altogether, but in the new
plan types we intentionally include change information for every resource
instance, even if no changes are actually planned, to allow alternative
plan file viewers to show what isn't changing as well as what is.
This codepath is going to be significantly changed before release to make
it support structural diff of the new data types, but this lets us lean on
the old renderer to produce partial output in the mean time while we
continue to work on getting things working end-to-end after the
considerable refactoring that's been going on.
Due to how often the state and plan types are referenced throughout
Terraform, there isn't a great way to switch them out gradually. As a
consequence, this huge commit gets us from the old world to a _compilable_
new world, but still has a large number of known test failures due to
key functionality being stubbed out.
The stubs here are for anything that interacts with providers, since we
now need to do the follow-up work to similarly replace the old
terraform.ResourceProvider interface with its replacement in the new
"providers" package. That work, along with work to fix the remaining
failing tests, will follow in subsequent commits.
The aim here was to replace all references to terraform.State and its
downstream types with states.State, terraform.Plan with plans.Plan,
state.State with statemgr.State, and switch to the new implementations of
the state and plan file formats. However, due to the number of times those
types are used, this also ended up affecting numerous other parts of core
such as terraform.Hook, the backend.Backend interface, and most of the CLI
commands.
Just as with 5861dbf3fc49b19587a31816eb06f511ab861bb4 before, I apologize
in advance to the person who inevitably just found this huge commit while
spelunking through the commit history.
If we get a diagnostic message that references a source range, and if the
source code for the referenced file is available, we'll show a snippet of
the source code with the source range highlighted.
At the moment we have no cache of source code, so in practice this
codepath can never be visited. Callers to format.Diagnostic will be
gradually updated in subsequent commits.
This new method showDiagnostics takes any value that would be accepted by
tfdiags.Append and renders it to the UI.
This is intended to encourage consistent handling of the different kinds
of errors and diagnostics that can be produced, and allow richer error
objects like the HCL2 diagnostics to be easily unwrapped and shown in
their full-fidelity.
In 3ea1592 the plan rendering was refactored to add an extra indirection
of producing a display-oriented plan object first and then rendering from
that object.
There was a logic error while adapting the existing plan rendering code
to use the new display-oriented object: the core InstanceDiff object sets
the "Destroy" flag (a boolean) for both DiffDestroy and DiffDestroyCreate,
and so this code previously checked r.Destroy to recognize the
"destroy-create" case. This was incorrectly adapted to a check for the
display action being DiffDestroy, when it should actually have been
DiffDestroyCreate.
The effect of this bug was to cause the "(forces new resource)"
annotations to not be displayed on attributes, though the resource-level
information still correctly reflected that a new resource was required.
This fix restores the attribute-level annotations.
The previous diff presentation was rather "wordy", and not very friendly
to those who can't see color either because they have color-blindness or
because they don't have a color-supporting terminal.
This new presentation uses the actual symbols used in the plan output
and tries to be more concise. It also uses some framing characters to
try to separate the different stages of "terraform plan" to make it
easier to visually navigate.
The apply command also adopts this new plan presentation, in preparation
for "terraform apply" (with interactive plan confirmation) becoming the
primary, safe workflow in the next major release.
Finally, we standardize on the terminology "perform" and "actions" rather
than "execute" and "changes" to reflect the fact that reading is now an
action and that isn't actually a _change_.
Previously the rendered plan output was constructed directly from the
core plan and then annotated with counts derived from the count hook.
At various places we applied little adjustments to deal with the fact that
the user-facing diff model is not identical to the internal diff model,
including the special handling of data source reads and destroys. Since
this logic was just muddled into the rendering code, it behaved
inconsistently with the tally of adds, updates and deletes.
This change reworks the plan formatter so that it happens in two stages:
- First, we produce a specialized Plan object that is tailored for use
in the UI. This applies all the relevant logic to transform the
physical model into the user model.
- Second, we do a straightforward visual rendering of the display-oriented
plan object.
For the moment this is slightly overkill since there's only one rendering
path, but it does give us the benefit of letting the counts be derived
from the same data as the full detailed diff, ensuring that they'll stay
consistent.
Later we may choose to have other UIs for plans, such as a
machine-readable output intended to drive a web UI. In that case, we'd
want the web UI to consume a serialization of the _display-oriented_ plan
so that it doesn't need to re-implement all of these UI special cases.
This introduces to core a new diff action type for "refresh". Currently
this is used _only_ in the UI layer, to represent data source reads.
Later it would be good to use this type for the core diff as well, to
improve consistency, but that is left for another day to keep this change
focused on the UI.
This change makes various minor adjustments to the rendering of plans
in the output of "terraform plan":
- Resources are identified using the standard resource address syntax,
rather than exposing the legacy internal representation used in the
module diff resource keys. This fixes#8713.
- Subjectively, having square brackets in the addresses made it look more
visually "off" when the same name but with different indices were
shown together with differing-length "symbols", so the symbols are now
all padded and right-aligned to three characters for consistent layout
across all operations.
- The -/+ action is now more visually distinct, using several different
colors to help communicate what it will do and including a more obvious
"(new resource required)" marker to help draw attention to this not
being just an update diff. This fixes#15350.
- The resources are now sorted in a manner that sorts index [10] after
index [9], rather than after index [1] as we did before. This makes it
easier to scan the list and avoids the common confusion where it seems
that there are only 10 items when in fact there are 11-20 items with
all the tens hiding further up in the list.