Track individual instance drift rather than whole resources which
contributed to the plan. This will allow the output to be more precise,
and we can still use NoKey instances as a proxy for containing resources
when needed.
Filter the refresh changes from the normal plan UI at the attribute
level. We do this by constructing fake plans.Change records for diff
generation, reverting all attribute changes that do not match any of the
plan's ContributingResourceReferences.
We introduced this experiment to gather feedback, and the feedback we saw
led to us deciding to do another round of design work before we move
forward with something to meet this use-case.
In addition to being experimental, this has only been included in alpha
releases so far, and so on both counts it is not protected by the
Terraform v1.0 Compatibility Promises.
The extra feedback information for why resource instance deletion is
planned is now included in the streaming JSON UI output.
We also add an explicit case for no-op actions to switch statements in
this package to ensure exhaustiveness, for future linting.
Add previous address information to the `planned_change` and
`resource_drift` messages for the streaming JSON UI output of plan and
apply operations.
Here we also add a "move" action value to the `change` object of these
messages, to represent a move-only operation.
As part of this work we also simplify this code to use the plan's
DriftedResources values instead of recomputing the drift from state.
The set of drifted resources now includes move-only changes, where the
object value is identical but a move has been executed. In normal
operation, we previousl displayed these moves twice: once as part of
drift output, and once as part of planned changes.
As of this commit we omit move-only changes from drift display, except
for refresh-only plans. This fixes the redundant output.
For resources which are planned to move, render the previous run address
as additional information in the plan UI. For the case of a move-only
resource (which otherwise is unchanged), we also render that as a
planned change, but without any corresponding action symbol.
If all changes in the plan are moves without changes, the plan is no
longer considered "empty". In this case, we skip rendering the action
symbols in the UI.
We're aware of several quirks of this command's current design, which
result from some existing architectural limitations that we can't address
immediately.
However, we do still want to make this command available in its current
capacity as an incremental improvement, so as a compromise we'll document
it as experimental. Our intent here is to exclude it from the
Terraform 1.0 Compatibility Promises so that we can have the space to
continue to improve the design as other parts of the overall Terraform
system gain new capabilities.
We don't currently have any concrete plan for this command to be
stabilized and subject to compatibility promises. That decision will
follow from ongoing discussions with other teams whose systems may need to
change in order to support the final design of "terraform add".
Extend the outputs JSON log message to support an `action` field (and
make the `type` and `value` fields optional). This allows us to emit a
useful output change summary as part of the plan, bringing the JSON log
output into parity with the text output.
While we do have access to the before/after values in the output
changes, attempting to wedge those into a structured log message is not
appropriate. That level of detail can be extracted from the JSON plan
output from `terraform show -json`.
This test would previously fail randomly due to the use of multiple
resource instances. Instance keys are iterated over as a map for
presentation, which has intentionally inconsistent ordering.
To fix this, I changed the test to use different resource addresses for
the three drift cases. I also extracted them to a separate test, and
tweaked the test helper functions to reduce the number of fatal exit
points, to make failed test debugging easier.
Because our snippet generator is trying to select whole lines to include
in the snippet, it has some edge cases for odd situations where the
relevant source range starts or ends directly at a newline, which were
previously causing this logic to return out-of-bounds offsets into the
code snippet string.
Although arguably it'd be better for the original diagnostics to report
more reasonable source ranges, it's better for us to report a
slightly-inaccurate snippet than to crash altogether, and so we'll extend
our existing range checks to check both bounds of the string and thus
avoid downstreams having to deal with out-of-bounds indices.
For completeness here I also added some similar logic to the
human-oriented diagnostic formatter, which consumes the result of the
JSON diagnostic builder. That's not really needed with the additional
checks in the JSON diagnostic builder, but it's nice to reinforce that
this code can't panic (in this way, at least) even if its input isn't
valid.
* command: new command, terraform add, generates resource templates
terraform add ADDRESS generates a resource configuration template with all required (and optionally optional) attributes set to null. This can optionally also pre-populate nonsesitive attributes with values from an existing resource of the same type in state (sensitive vals will be populated with null and a comment indicating sensitivity)
* website: terraform add documentation
This was dead code, and there is no clear way to retrieve this
information, as we currently only derive the drift information as part
of the rendering process.
The schemas for provider and the resources didn't match, so the changes
were not going to be rendered at all.
Add a test which contains a deposed resource.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.