govendor fetch github.com/hashicorp/hcl2/ext/dynblock/...

This commit is contained in:
Martin Atkins 2018-04-03 11:20:58 -07:00
parent 63041ffa09
commit f2809854a2
10 changed files with 1041 additions and 0 deletions

184
vendor/github.com/hashicorp/hcl2/ext/dynblock/README.md generated vendored Normal file
View File

@ -0,0 +1,184 @@
# HCL Dynamic Blocks Extension
This HCL extension implements a special block type named "dynamic" that can
be used to dynamically generate blocks of other types by iterating over
collection values.
Normally the block structure in an HCL configuration file is rigid, even
though dynamic expressions can be used within attribute values. This is
convenient for most applications since it allows the overall structure of
the document to be decoded easily, but in some applications it is desirable
to allow dynamic block generation within certain portions of the configuration.
Dynamic block generation is performed using the `dynamic` block type:
```hcl
toplevel {
nested {
foo = "static block 1"
}
dynamic "nested" {
for_each = ["a", "b", "c"]
iterator = nested
content {
foo = "dynamic block ${nested.value}"
}
}
nested {
foo = "static block 2"
}
}
```
The above is interpreted as if it were written as follows:
```hcl
toplevel {
nested {
foo = "static block 1"
}
nested {
foo = "dynamic block a"
}
nested {
foo = "dynamic block b"
}
nested {
foo = "dynamic block c"
}
nested {
foo = "static block 2"
}
}
```
Since HCL block syntax is not normally exposed to the possibility of unknown
values, this extension must make some compromises when asked to iterate over
an unknown collection. If the length of the collection cannot be statically
recognized (because it is an unknown value of list, map, or set type) then
the `dynamic` construct will generate a _single_ dynamic block whose iterator
key and value are both unknown values of the dynamic pseudo-type, thus causing
any attribute values derived from iteration to appear as unknown values. There
is no explicit representation of the fact that the length of the collection may
eventually be different than one.
## Usage
Pass a body to function `Expand` to obtain a new body that will, on access
to its content, evaluate and expand any nested `dynamic` blocks.
Dynamic block processing is also automatically propagated into any nested
blocks that are returned, allowing users to nest dynamic blocks inside
one another and to nest dynamic blocks inside other static blocks.
HCL structural decoding does not normally have access to an `EvalContext`, so
any variables and functions that should be available to the `for_each`
and `labels` expressions must be passed in when calling `Expand`. Expressions
within the `content` block are evaluated separately and so can be passed a
separate `EvalContext` if desired, during normal attribute expression
evaluation.
## Detecting Variables
Some applications dynamically generate an `EvalContext` by analyzing which
variables are referenced by an expression before evaluating it.
This unfortunately requires some extra effort when this analysis is required
for the context passed to `Expand`: the HCL API requires a schema to be
provided in order to do any analysis of the blocks in a body, but the low-level
schema model provides a description of only one level of nested blocks at
a time, and thus a new schema must be provided for each additional level of
nesting.
To make this arduous process as convenient as possbile, this package provides
a helper function `WalkForEachVariables`, which returns a `WalkVariablesNode`
instance that can be used to find variables directly in a given body and also
determine which nested blocks require recursive calls. Using this mechanism
requires that the caller be able to look up a schema given a nested block type.
For _simple_ formats where a specific block type name always has the same schema
regardless of context, a walk can be implemented as follows:
```go
func walkVariables(node dynblock.WalkVariablesNode, schema *hcl.BodySchema) []hcl.Traversal {
vars, children := node.Visit(schema)
for _, child := range children {
var childSchema *hcl.BodySchema
switch child.BlockTypeName {
case "a":
childSchema = &hcl.BodySchema{
Blocks: []hcl.BlockHeaderSchema{
{
Type: "b",
LabelNames: []string{"key"},
},
},
}
case "b":
childSchema = &hcl.BodySchema{
Attributes: []hcl.AttributeSchema{
{
Name: "val",
Required: true,
},
},
}
default:
// Should never happen, because the above cases should be exhaustive
// for the application's configuration format.
panic(fmt.Errorf("can't find schema for unknown block type %q", child.BlockTypeName))
}
vars = append(vars, testWalkAndAccumVars(child.Node, childSchema)...)
}
}
```
### Detecting Variables with `hcldec` Specifications
For applications that use the higher-level `hcldec` package to decode nested
configuration structures into `cty` values, the same specification can be used
to automatically drive the recursive variable-detection walk described above.
The helper function `ForEachVariablesHCLDec` allows an entire recursive
configuration structure to be analyzed in a single call given a `hcldec.Spec`
that describes the nested block structure. This means a `hcldec`-based
application can support dynamic blocks with only a little additional effort:
```go
func decodeBody(body hcl.Body, spec hcldec.Spec) (cty.Value, hcl.Diagnostics) {
// Determine which variables are needed to expand dynamic blocks
neededForDynamic := dynblock.ForEachVariablesHCLDec(body, spec)
// Build a suitable EvalContext and expand dynamic blocks
dynCtx := buildEvalContext(neededForDynamic)
dynBody := dynblock.Expand(body, dynCtx)
// Determine which variables are needed to fully decode the expanded body
// This will analyze expressions that came both from static blocks in the
// original body and from blocks that were dynamically added by Expand.
neededForDecode := hcldec.Variables(dynBody, spec)
// Build a suitable EvalContext and then fully decode the body as per the
// hcldec specification.
decCtx := buildEvalContext(neededForDecode)
return hcldec.Decode(dynBody, spec, decCtx)
}
func buildEvalContext(needed []hcl.Traversal) *hcl.EvalContext {
// (to be implemented by your application)
}
```
# Performance
This extension is going quite harshly against the grain of the HCL API, and
so it uses lots of wrapping objects and temporary data structures to get its
work done. HCL in general is not suitable for use in high-performance situations
or situations sensitive to memory pressure, but that is _especially_ true for
this extension.

View File

@ -0,0 +1,251 @@
package dynblock
import (
"fmt"
"github.com/hashicorp/hcl2/hcl"
"github.com/zclconf/go-cty/cty"
)
// expandBody wraps another hcl.Body and expands any "dynamic" blocks found
// inside whenever Content or PartialContent is called.
type expandBody struct {
original hcl.Body
forEachCtx *hcl.EvalContext
iteration *iteration // non-nil if we're nested inside another "dynamic" block
// These are used with PartialContent to produce a "remaining items"
// body to return. They are nil on all bodies fresh out of the transformer.
//
// Note that this is re-implemented here rather than delegating to the
// existing support required by the underlying body because we need to
// retain access to the entire original body on subsequent decode operations
// so we can retain any "dynamic" blocks for types we didn't take consume
// on the first pass.
hiddenAttrs map[string]struct{}
hiddenBlocks map[string]hcl.BlockHeaderSchema
}
func (b *expandBody) Content(schema *hcl.BodySchema) (*hcl.BodyContent, hcl.Diagnostics) {
extSchema := b.extendSchema(schema)
rawContent, diags := b.original.Content(extSchema)
blocks, blockDiags := b.expandBlocks(schema, rawContent.Blocks, false)
diags = append(diags, blockDiags...)
attrs := b.prepareAttributes(rawContent.Attributes)
content := &hcl.BodyContent{
Attributes: attrs,
Blocks: blocks,
MissingItemRange: b.original.MissingItemRange(),
}
return content, diags
}
func (b *expandBody) PartialContent(schema *hcl.BodySchema) (*hcl.BodyContent, hcl.Body, hcl.Diagnostics) {
extSchema := b.extendSchema(schema)
rawContent, _, diags := b.original.PartialContent(extSchema)
// We discard the "remain" argument above because we're going to construct
// our own remain that also takes into account remaining "dynamic" blocks.
blocks, blockDiags := b.expandBlocks(schema, rawContent.Blocks, true)
diags = append(diags, blockDiags...)
attrs := b.prepareAttributes(rawContent.Attributes)
content := &hcl.BodyContent{
Attributes: attrs,
Blocks: blocks,
MissingItemRange: b.original.MissingItemRange(),
}
remain := &expandBody{
original: b.original,
forEachCtx: b.forEachCtx,
iteration: b.iteration,
hiddenAttrs: make(map[string]struct{}),
hiddenBlocks: make(map[string]hcl.BlockHeaderSchema),
}
for name := range b.hiddenAttrs {
remain.hiddenAttrs[name] = struct{}{}
}
for typeName, blockS := range b.hiddenBlocks {
remain.hiddenBlocks[typeName] = blockS
}
for _, attrS := range schema.Attributes {
remain.hiddenAttrs[attrS.Name] = struct{}{}
}
for _, blockS := range schema.Blocks {
remain.hiddenBlocks[blockS.Type] = blockS
}
return content, remain, diags
}
func (b *expandBody) extendSchema(schema *hcl.BodySchema) *hcl.BodySchema {
// We augment the requested schema to also include our special "dynamic"
// block type, since then we'll get instances of it interleaved with
// all of the literal child blocks we must also include.
extSchema := &hcl.BodySchema{
Attributes: schema.Attributes,
Blocks: make([]hcl.BlockHeaderSchema, len(schema.Blocks), len(schema.Blocks)+len(b.hiddenBlocks)+1),
}
copy(extSchema.Blocks, schema.Blocks)
extSchema.Blocks = append(extSchema.Blocks, dynamicBlockHeaderSchema)
// If we have any hiddenBlocks then we also need to register those here
// so that a call to "Content" on the underlying body won't fail.
// (We'll filter these out again once we process the result of either
// Content or PartialContent.)
for _, blockS := range b.hiddenBlocks {
extSchema.Blocks = append(extSchema.Blocks, blockS)
}
// If we have any hiddenAttrs then we also need to register these, for
// the same reason as we deal with hiddenBlocks above.
if len(b.hiddenAttrs) != 0 {
newAttrs := make([]hcl.AttributeSchema, len(schema.Attributes), len(schema.Attributes)+len(b.hiddenAttrs))
copy(newAttrs, extSchema.Attributes)
for name := range b.hiddenAttrs {
newAttrs = append(newAttrs, hcl.AttributeSchema{
Name: name,
Required: false,
})
}
extSchema.Attributes = newAttrs
}
return extSchema
}
func (b *expandBody) prepareAttributes(rawAttrs hcl.Attributes) hcl.Attributes {
if len(b.hiddenAttrs) == 0 && b.iteration == nil {
// Easy path: just pass through the attrs from the original body verbatim
return rawAttrs
}
// Otherwise we have some work to do: we must filter out any attributes
// that are hidden (since a previous PartialContent call already saw these)
// and wrap the expressions of the inner attributes so that they will
// have access to our iteration variables.
attrs := make(hcl.Attributes, len(rawAttrs))
for name, rawAttr := range rawAttrs {
if _, hidden := b.hiddenAttrs[name]; hidden {
continue
}
if b.iteration != nil {
attr := *rawAttr // shallow copy so we can mutate it
attr.Expr = exprWrap{
Expression: attr.Expr,
i: b.iteration,
}
attrs[name] = &attr
} else {
// If we have no active iteration then no wrapping is required.
attrs[name] = rawAttr
}
}
return attrs
}
func (b *expandBody) expandBlocks(schema *hcl.BodySchema, rawBlocks hcl.Blocks, partial bool) (hcl.Blocks, hcl.Diagnostics) {
var blocks hcl.Blocks
var diags hcl.Diagnostics
for _, rawBlock := range rawBlocks {
switch rawBlock.Type {
case "dynamic":
realBlockType := rawBlock.Labels[0]
if _, hidden := b.hiddenBlocks[realBlockType]; hidden {
continue
}
var blockS *hcl.BlockHeaderSchema
for _, candidate := range schema.Blocks {
if candidate.Type == realBlockType {
blockS = &candidate
break
}
}
if blockS == nil {
// Not a block type that the caller requested.
if !partial {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Unsupported block type",
Detail: fmt.Sprintf("Blocks of type %q are not expected here.", realBlockType),
Subject: &rawBlock.LabelRanges[0],
})
}
continue
}
spec, specDiags := b.decodeSpec(blockS, rawBlock)
diags = append(diags, specDiags...)
if specDiags.HasErrors() {
continue
}
if spec.forEachVal.IsKnown() {
for it := spec.forEachVal.ElementIterator(); it.Next(); {
key, value := it.Element()
i := b.iteration.MakeChild(spec.iteratorName, key, value)
block, blockDiags := spec.newBlock(i, b.forEachCtx)
diags = append(diags, blockDiags...)
if block != nil {
// Attach our new iteration context so that attributes
// and other nested blocks can refer to our iterator.
block.Body = b.expandChild(block.Body, i)
blocks = append(blocks, block)
}
}
} else {
// If our top-level iteration value isn't known then we're forced
// to compromise since HCL doesn't have any concept of an
// "unknown block". In this case then, we'll produce a single
// dynamic block with the iterator values set to DynamicVal,
// which at least makes the potential for a block visible
// in our result, even though it's not represented in a fully-accurate
// way.
i := b.iteration.MakeChild(spec.iteratorName, cty.DynamicVal, cty.DynamicVal)
block, blockDiags := spec.newBlock(i, b.forEachCtx)
diags = append(diags, blockDiags...)
if block != nil {
block.Body = b.expandChild(block.Body, i)
blocks = append(blocks, block)
}
}
default:
if _, hidden := b.hiddenBlocks[rawBlock.Type]; !hidden {
// A static block doesn't create a new iteration context, but
// it does need to inherit _our own_ iteration context in
// case it contains expressions that refer to our inherited
// iterators, or nested "dynamic" blocks.
expandedBlock := *rawBlock // shallow copy
expandedBlock.Body = b.expandChild(rawBlock.Body, b.iteration)
blocks = append(blocks, &expandedBlock)
}
}
}
return blocks, diags
}
func (b *expandBody) expandChild(child hcl.Body, i *iteration) hcl.Body {
ret := Expand(child, b.forEachCtx)
ret.(*expandBody).iteration = i
return ret
}
func (b *expandBody) JustAttributes() (hcl.Attributes, hcl.Diagnostics) {
// blocks aren't allowed in JustAttributes mode and this body can
// only produce blocks, so we'll just pass straight through to our
// underlying body here.
return b.original.JustAttributes()
}
func (b *expandBody) MissingItemRange() hcl.Range {
return b.original.MissingItemRange()
}

View File

@ -0,0 +1,202 @@
package dynblock
import (
"fmt"
"github.com/hashicorp/hcl2/hcl"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
)
type expandSpec struct {
blockType string
blockTypeRange hcl.Range
defRange hcl.Range
forEachVal cty.Value
iteratorName string
labelExprs []hcl.Expression
contentBody hcl.Body
inherited map[string]*iteration
}
func (b *expandBody) decodeSpec(blockS *hcl.BlockHeaderSchema, rawSpec *hcl.Block) (*expandSpec, hcl.Diagnostics) {
var diags hcl.Diagnostics
var schema *hcl.BodySchema
if len(blockS.LabelNames) != 0 {
schema = dynamicBlockBodySchemaLabels
} else {
schema = dynamicBlockBodySchemaNoLabels
}
specContent, specDiags := rawSpec.Body.Content(schema)
diags = append(diags, specDiags...)
if specDiags.HasErrors() {
return nil, diags
}
//// for_each attribute
eachAttr := specContent.Attributes["for_each"]
eachVal, eachDiags := eachAttr.Expr.Value(b.forEachCtx)
diags = append(diags, eachDiags...)
if !eachVal.CanIterateElements() {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid dynamic for_each value",
Detail: fmt.Sprintf("Cannot use a value of type %s in for_each. An iterable collection is required.", eachVal.Type()),
Subject: eachAttr.Expr.Range().Ptr(),
})
return nil, diags
}
if eachVal.IsNull() {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid dynamic for_each value",
Detail: "Cannot use a null value in for_each.",
Subject: eachAttr.Expr.Range().Ptr(),
})
return nil, diags
}
//// iterator attribute
iteratorName := blockS.Type
if iteratorAttr := specContent.Attributes["iterator"]; iteratorAttr != nil {
itTraversal, itDiags := hcl.AbsTraversalForExpr(iteratorAttr.Expr)
diags = append(diags, itDiags...)
if itDiags.HasErrors() {
return nil, diags
}
if len(itTraversal) != 1 {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid dynamic iterator name",
Detail: "Dynamic iterator must be a single variable name.",
Subject: itTraversal.SourceRange().Ptr(),
})
return nil, diags
}
iteratorName = itTraversal.RootName()
}
var labelExprs []hcl.Expression
if labelsAttr := specContent.Attributes["labels"]; labelsAttr != nil {
var labelDiags hcl.Diagnostics
labelExprs, labelDiags = hcl.ExprList(labelsAttr.Expr)
diags = append(diags, labelDiags...)
if labelDiags.HasErrors() {
return nil, diags
}
if len(labelExprs) > len(blockS.LabelNames) {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Extraneous dynamic block label",
Detail: fmt.Sprintf("Blocks of type %q require %d label(s).", blockS.Type, len(blockS.LabelNames)),
Subject: labelExprs[len(blockS.LabelNames)].Range().Ptr(),
})
return nil, diags
} else if len(labelExprs) < len(blockS.LabelNames) {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Insufficient dynamic block labels",
Detail: fmt.Sprintf("Blocks of type %q require %d label(s).", blockS.Type, len(blockS.LabelNames)),
Subject: labelsAttr.Expr.Range().Ptr(),
})
return nil, diags
}
}
// Since our schema requests only blocks of type "content", we can assume
// that all entries in specContent.Blocks are content blocks.
if len(specContent.Blocks) == 0 {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Missing dynamic content block",
Detail: "A dynamic block must have a nested block of type \"content\" to describe the body of each generated block.",
Subject: &specContent.MissingItemRange,
})
return nil, diags
}
if len(specContent.Blocks) > 1 {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Extraneous dynamic content block",
Detail: "Only one nested content block is allowed for each dynamic block.",
Subject: &specContent.Blocks[1].DefRange,
})
return nil, diags
}
return &expandSpec{
blockType: blockS.Type,
blockTypeRange: rawSpec.LabelRanges[0],
defRange: rawSpec.DefRange,
forEachVal: eachVal,
iteratorName: iteratorName,
labelExprs: labelExprs,
contentBody: specContent.Blocks[0].Body,
}, diags
}
func (s *expandSpec) newBlock(i *iteration, ctx *hcl.EvalContext) (*hcl.Block, hcl.Diagnostics) {
var diags hcl.Diagnostics
var labels []string
var labelRanges []hcl.Range
lCtx := i.EvalContext(ctx)
for _, labelExpr := range s.labelExprs {
labelVal, labelDiags := labelExpr.Value(lCtx)
diags = append(diags, labelDiags...)
if labelDiags.HasErrors() {
return nil, diags
}
var convErr error
labelVal, convErr = convert.Convert(labelVal, cty.String)
if convErr != nil {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid dynamic block label",
Detail: fmt.Sprintf("Cannot use this value as a dynamic block label: %s.", convErr),
Subject: labelExpr.Range().Ptr(),
})
return nil, diags
}
if labelVal.IsNull() {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid dynamic block label",
Detail: "Cannot use a null value as a dynamic block label.",
Subject: labelExpr.Range().Ptr(),
})
return nil, diags
}
if !labelVal.IsKnown() {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid dynamic block label",
Detail: "This value is not yet known. Dynamic block labels must be immediately-known values.",
Subject: labelExpr.Range().Ptr(),
})
return nil, diags
}
labels = append(labels, labelVal.AsString())
labelRanges = append(labelRanges, labelExpr.Range())
}
block := &hcl.Block{
Type: s.blockType,
TypeRange: s.blockTypeRange,
Labels: labels,
LabelRanges: labelRanges,
DefRange: s.defRange,
Body: s.contentBody,
}
return block, diags
}

View File

@ -0,0 +1,42 @@
package dynblock
import (
"github.com/hashicorp/hcl2/hcl"
"github.com/zclconf/go-cty/cty"
)
type exprWrap struct {
hcl.Expression
i *iteration
}
func (e exprWrap) Variables() []hcl.Traversal {
raw := e.Expression.Variables()
ret := make([]hcl.Traversal, 0, len(raw))
// Filter out traversals that refer to our iterator name or any
// iterator we've inherited; we're going to provide those in
// our Value wrapper, so the caller doesn't need to know about them.
for _, traversal := range raw {
rootName := traversal.RootName()
if rootName == e.i.IteratorName {
continue
}
if _, inherited := e.i.Inherited[rootName]; inherited {
continue
}
ret = append(ret, traversal)
}
return ret
}
func (e exprWrap) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
extCtx := e.i.EvalContext(ctx)
return e.Expression.Value(extCtx)
}
// UnwrapExpression returns the expression being wrapped by this instance.
// This allows the original expression to be recovered by hcl.UnwrapExpression.
func (e exprWrap) UnwrapExpression() hcl.Expression {
return e.Expression
}

View File

@ -0,0 +1,64 @@
package dynblock
import (
"github.com/hashicorp/hcl2/hcl"
"github.com/zclconf/go-cty/cty"
)
type iteration struct {
IteratorName string
Key cty.Value
Value cty.Value
Inherited map[string]*iteration
}
func (s *expandSpec) MakeIteration(key, value cty.Value) *iteration {
return &iteration{
IteratorName: s.iteratorName,
Key: key,
Value: value,
Inherited: s.inherited,
}
}
func (i *iteration) Object() cty.Value {
return cty.ObjectVal(map[string]cty.Value{
"key": i.Key,
"value": i.Value,
})
}
func (i *iteration) EvalContext(base *hcl.EvalContext) *hcl.EvalContext {
new := base.NewChild()
new.Variables = map[string]cty.Value{}
for name, otherIt := range i.Inherited {
new.Variables[name] = otherIt.Object()
}
new.Variables[i.IteratorName] = i.Object()
return new
}
func (i *iteration) MakeChild(iteratorName string, key, value cty.Value) *iteration {
if i == nil {
// Create entirely new root iteration, then
return &iteration{
IteratorName: iteratorName,
Key: key,
Value: value,
}
}
inherited := map[string]*iteration{}
for name, otherIt := range i.Inherited {
inherited[name] = otherIt
}
inherited[i.IteratorName] = i
return &iteration{
IteratorName: iteratorName,
Key: key,
Value: value,
Inherited: inherited,
}
}

View File

@ -0,0 +1,44 @@
package dynblock
import (
"github.com/hashicorp/hcl2/hcl"
)
// Expand "dynamic" blocks in the given body, returning a new body that
// has those blocks expanded.
//
// The given EvalContext is used when evaluating "for_each" and "labels"
// attributes within dynamic blocks, allowing those expressions access to
// variables and functions beyond the iterator variable created by the
// iteration.
//
// Expand returns no diagnostics because no blocks are actually expanded
// until a call to Content or PartialContent on the returned body, which
// will then expand only the blocks selected by the schema.
//
// "dynamic" blocks are also expanded automatically within nested blocks
// in the given body, including within other dynamic blocks, thus allowing
// multi-dimensional iteration. However, it is not possible to
// dynamically-generate the "dynamic" blocks themselves except through nesting.
//
// parent {
// dynamic "child" {
// for_each = child_objs
// content {
// dynamic "grandchild" {
// for_each = child.value.children
// labels = [grandchild.key]
// content {
// parent_key = child.key
// value = grandchild.value
// }
// }
// }
// }
// }
func Expand(body hcl.Body, ctx *hcl.EvalContext) hcl.Body {
return &expandBody{
original: body,
forEachCtx: ctx,
}
}

View File

@ -0,0 +1,50 @@
package dynblock
import "github.com/hashicorp/hcl2/hcl"
var dynamicBlockHeaderSchema = hcl.BlockHeaderSchema{
Type: "dynamic",
LabelNames: []string{"type"},
}
var dynamicBlockBodySchemaLabels = &hcl.BodySchema{
Attributes: []hcl.AttributeSchema{
{
Name: "for_each",
Required: true,
},
{
Name: "iterator",
Required: false,
},
{
Name: "labels",
Required: true,
},
},
Blocks: []hcl.BlockHeaderSchema{
{
Type: "content",
LabelNames: nil,
},
},
}
var dynamicBlockBodySchemaNoLabels = &hcl.BodySchema{
Attributes: []hcl.AttributeSchema{
{
Name: "for_each",
Required: true,
},
{
Name: "iterator",
Required: false,
},
},
Blocks: []hcl.BlockHeaderSchema{
{
Type: "content",
LabelNames: nil,
},
},
}

View File

@ -0,0 +1,165 @@
package dynblock
import (
"github.com/hashicorp/hcl2/hcl"
"github.com/zclconf/go-cty/cty"
)
// WalkVariables begins the recursive process of walking the variables in the
// given body that are needed by any "for_each" or "labels" attributes in
// "dynamic" blocks. The result is a WalkVariablesNode, which can extract
// root-level variable traversals and produce a list of child nodes that
// also need to be processed by calling Visit.
//
// This function requires that the caller walk through the nested block
// structure in the given body level-by-level so that an appropriate schema
// can be provided at each level to inform further processing. This workflow
// is thus easiest to use for calling applications that have some higher-level
// schema representation available with which to drive this multi-step
// process.
func WalkForEachVariables(body hcl.Body) WalkVariablesNode {
return WalkVariablesNode{
body: body,
}
}
type WalkVariablesNode struct {
body hcl.Body
it *iteration
}
type WalkVariablesChild struct {
BlockTypeName string
Node WalkVariablesNode
}
// Visit returns the variable traversals required for any "dynamic" blocks
// directly in the body associated with this node, and also returns any child
// nodes that must be visited in order to continue the walk.
//
// Each child node has its associated block type name given in its BlockTypeName
// field, which the calling application should use to determine the appropriate
// schema for the content of each child node and pass it to the child node's
// own Visit method to continue the walk recursively.
func (n WalkVariablesNode) Visit(schema *hcl.BodySchema) (vars []hcl.Traversal, children []WalkVariablesChild) {
extSchema := n.extendSchema(schema)
container, _, _ := n.body.PartialContent(extSchema)
if container == nil {
return vars, children
}
children = make([]WalkVariablesChild, 0, len(container.Blocks))
for _, block := range container.Blocks {
switch block.Type {
case "dynamic":
blockTypeName := block.Labels[0]
inner, _, _ := block.Body.PartialContent(variableDetectionInnerSchema)
if inner == nil {
continue
}
iteratorName := blockTypeName
if attr, exists := inner.Attributes["iterator"]; exists {
iterTraversal, _ := hcl.AbsTraversalForExpr(attr.Expr)
if len(iterTraversal) == 0 {
// Ignore this invalid dynamic block, since it'll produce
// an error if someone tries to extract content from it
// later anyway.
continue
}
iteratorName = iterTraversal.RootName()
}
blockIt := n.it.MakeChild(iteratorName, cty.DynamicVal, cty.DynamicVal)
if attr, exists := inner.Attributes["for_each"]; exists {
// Filter out iterator names inherited from parent blocks
for _, traversal := range attr.Expr.Variables() {
if _, inherited := blockIt.Inherited[traversal.RootName()]; !inherited {
vars = append(vars, traversal)
}
}
}
if attr, exists := inner.Attributes["labels"]; exists {
// Filter out both our own iterator name _and_ those inherited
// from parent blocks, since we provide _both_ of these to the
// label expressions.
for _, traversal := range attr.Expr.Variables() {
ours := traversal.RootName() == iteratorName
_, inherited := blockIt.Inherited[traversal.RootName()]
if !(ours || inherited) {
vars = append(vars, traversal)
}
}
}
for _, contentBlock := range inner.Blocks {
// We only request "content" blocks in our schema, so we know
// any blocks we find here will be content blocks. We require
// exactly one content block for actual expansion, but we'll
// be more liberal here so that callers can still collect
// variables from erroneous "dynamic" blocks.
children = append(children, WalkVariablesChild{
BlockTypeName: blockTypeName,
Node: WalkVariablesNode{
body: contentBlock.Body,
it: blockIt,
},
})
}
default:
children = append(children, WalkVariablesChild{
BlockTypeName: block.Type,
Node: WalkVariablesNode{
body: block.Body,
it: n.it,
},
})
}
}
return vars, children
}
func (n WalkVariablesNode) extendSchema(schema *hcl.BodySchema) *hcl.BodySchema {
// We augment the requested schema to also include our special "dynamic"
// block type, since then we'll get instances of it interleaved with
// all of the literal child blocks we must also include.
extSchema := &hcl.BodySchema{
Attributes: schema.Attributes,
Blocks: make([]hcl.BlockHeaderSchema, len(schema.Blocks), len(schema.Blocks)+1),
}
copy(extSchema.Blocks, schema.Blocks)
extSchema.Blocks = append(extSchema.Blocks, dynamicBlockHeaderSchema)
return extSchema
}
// This is a more relaxed schema than what's in schema.go, since we
// want to maximize the amount of variables we can find even if there
// are erroneous blocks.
var variableDetectionInnerSchema = &hcl.BodySchema{
Attributes: []hcl.AttributeSchema{
{
Name: "for_each",
Required: false,
},
{
Name: "labels",
Required: false,
},
{
Name: "iterator",
Required: false,
},
},
Blocks: []hcl.BlockHeaderSchema{
{
Type: "content",
},
},
}

View File

@ -0,0 +1,33 @@
package dynblock
import (
"github.com/hashicorp/hcl2/hcl"
"github.com/hashicorp/hcl2/hcldec"
)
// ForEachVariablesHCLDec is a wrapper around WalkForEachVariables that
// uses the given hcldec specification to automatically drive the recursive
// walk through nested blocks in the given body.
//
// This provides more convenient access to all of the "for_each" and "labels"
// dependencies in a body for applications that are already using hcldec
// as a more convenient way to recursively decode body contents.
func ForEachVariablesHCLDec(body hcl.Body, spec hcldec.Spec) []hcl.Traversal {
rootNode := WalkForEachVariables(body)
return walkVariablesWithHCLDec(rootNode, spec)
}
func walkVariablesWithHCLDec(node WalkVariablesNode, spec hcldec.Spec) []hcl.Traversal {
vars, children := node.Visit(hcldec.ImpliedSchema(spec))
if len(children) > 0 {
childSpecs := hcldec.ChildBlockTypes(spec)
for _, child := range children {
if childSpec, exists := childSpecs[child.BlockTypeName]; exists {
vars = append(vars, walkVariablesWithHCLDec(child.Node, childSpec)...)
}
}
}
return vars
}

6
vendor/vendor.json vendored
View File

@ -1888,6 +1888,12 @@
"revision": "a4b07c25de5ff55ad3b8936cea69a79a3d95a855",
"revisionTime": "2017-05-04T19:02:34Z"
},
{
"checksumSHA1": "dJPromzLdd492RQjE/09klKRXGs=",
"path": "github.com/hashicorp/hcl2/ext/dynblock",
"revision": "5f8ed954abd873b2c09616ba0aa607892bbca7e9",
"revisionTime": "2018-03-08T16:30:58Z"
},
{
"checksumSHA1": "Tpj2tK/XrhxbIKB5xEJlfTI46M0=",
"path": "github.com/hashicorp/hcl2/ext/typeexpr",