refactoring: exhaustive NestedWithin checks
When checking dependencies between statements, we need to check all combinations of To and From addresses.
This commit is contained in:
parent
c8cd0b1e74
commit
cac1f5c264
|
@ -200,10 +200,13 @@ func buildMoveStatementGraph(stmts []MoveStatement) *dag.AcyclicGraph {
|
|||
for dependerI := range stmts {
|
||||
depender := &stmts[dependerI]
|
||||
for dependeeI := range stmts {
|
||||
if dependerI == dependeeI {
|
||||
// skip comparing the statement to itself
|
||||
continue
|
||||
}
|
||||
dependee := &stmts[dependeeI]
|
||||
dependeeTo := dependee.To
|
||||
dependerFrom := depender.From
|
||||
if dependerFrom.CanChainFrom(dependeeTo) || dependerFrom.NestedWithin(dependeeTo) {
|
||||
|
||||
if statementDependsOn(depender, dependee) {
|
||||
g.Connect(dag.BasicEdge(depender, dependee))
|
||||
}
|
||||
}
|
||||
|
@ -212,6 +215,36 @@ func buildMoveStatementGraph(stmts []MoveStatement) *dag.AcyclicGraph {
|
|||
return g
|
||||
}
|
||||
|
||||
// statementDependsOn returns true if statement a depends on statement b;
|
||||
// i.e. statement b must be executed before statement a.
|
||||
func statementDependsOn(a, b *MoveStatement) bool {
|
||||
// chain-able moves are simple, as on the destination of one move could be
|
||||
// equal to the source of another.
|
||||
if a.From.CanChainFrom(b.To) {
|
||||
return true
|
||||
}
|
||||
|
||||
// Statement nesting in more complex, as we have 8 possible combinations to
|
||||
// assess. Here we list all combinations, along with the statement which
|
||||
// must be executed first when one address is nested within another.
|
||||
// A.From IsNestedWithin B.From => A
|
||||
// A.From IsNestedWithin B.To => B
|
||||
// A.To IsNestedWithin B.From => A
|
||||
// A.To IsNestedWithin B.To => B
|
||||
// B.From IsNestedWithin A.From => B
|
||||
// B.From IsNestedWithin A.To => A
|
||||
// B.To IsNestedWithin A.From => B
|
||||
// B.To IsNestedWithin A.To => A
|
||||
//
|
||||
// Since we are only interested in checking if A depends on B, we only need
|
||||
// to check the 4 possibilities above which result in B being executed
|
||||
// first.
|
||||
return a.From.NestedWithin(b.To) ||
|
||||
a.To.NestedWithin(b.To) ||
|
||||
b.From.NestedWithin(a.From) ||
|
||||
b.To.NestedWithin(a.From)
|
||||
}
|
||||
|
||||
// MoveResults describes the outcome of an ApplyMoves call.
|
||||
type MoveResults struct {
|
||||
// Changes is a map from the unique keys of the final new resource
|
||||
|
|
|
@ -491,13 +491,35 @@ func TestApplyMoves(t *testing.T) {
|
|||
`foo.to[0]`,
|
||||
},
|
||||
},
|
||||
"move resource and containing module": {
|
||||
[]MoveStatement{
|
||||
testMoveStatement(t, "", "module.boo", "module.bar[0]"),
|
||||
testMoveStatement(t, "boo", "foo.from", "foo.to"),
|
||||
},
|
||||
states.BuildState(func(s *states.SyncState) {
|
||||
s.SetResourceInstanceCurrent(
|
||||
instAddrs["module.boo.foo.from"],
|
||||
&states.ResourceInstanceObjectSrc{
|
||||
Status: states.ObjectReady,
|
||||
AttrsJSON: []byte(`{}`),
|
||||
},
|
||||
providerAddr,
|
||||
)
|
||||
}),
|
||||
MoveResults{
|
||||
Changes: map[addrs.UniqueKey]MoveSuccess{
|
||||
instAddrs["module.bar[0].foo.to"].UniqueKey(): {
|
||||
From: instAddrs["module.boo.foo.from"],
|
||||
To: instAddrs["module.bar[0].foo.to"],
|
||||
},
|
||||
},
|
||||
Blocked: map[addrs.UniqueKey]MoveBlocked{},
|
||||
},
|
||||
[]string{
|
||||
`module.bar[0].foo.to`,
|
||||
},
|
||||
},
|
||||
|
||||
// FIXME: This test seems to flap between the result the test case
|
||||
// currently records and the "more intuitive" results included inline,
|
||||
// which suggests we have a missing edge in our move dependency graph.
|
||||
// (The MoveResults commented out below predates some changes to that
|
||||
// struct, so will need updating once we uncomment this test.)
|
||||
/*
|
||||
"move module and then move resource into it": {
|
||||
[]MoveStatement{
|
||||
testMoveStatement(t, "", "module.bar[0]", "module.boo"),
|
||||
|
@ -522,39 +544,24 @@ func TestApplyMoves(t *testing.T) {
|
|||
)
|
||||
}),
|
||||
MoveResults{
|
||||
// FIXME: This result is counter-intuitive, because ApplyMoves
|
||||
// handled the resource move first and then the module move
|
||||
// collided with it. It would be arguably more intuitive to
|
||||
// complete the module move first and then let the "smaller"
|
||||
// resource move merge into it.
|
||||
// (The arguably-more-intuitive results are commented out
|
||||
// in the maps below.)
|
||||
|
||||
Changes: map[addrs.UniqueKey]MoveSuccess{
|
||||
//instAddrs["module.boo.foo.to"].UniqueKey(): instAddrs["module.bar[0].foo.to"],
|
||||
//instAddrs["module.boo.foo.from"].UniqueKey(): instAddrs["foo.from"],
|
||||
instAddrs["module.boo.foo.from"].UniqueKey(): instAddrs["foo.from"],
|
||||
instAddrs["module.boo.foo.from"].UniqueKey(): {
|
||||
instAddrs["foo.from"],
|
||||
instAddrs["module.boo.foo.from"],
|
||||
},
|
||||
Blocked: map[addrs.UniqueKey]MoveBlocked{
|
||||
// intuitive result: nothing blocked
|
||||
instAddrs["module.bar[0].foo.to"].Module.UniqueKey(): instAddrs["module.boo.foo.from"].Module,
|
||||
instAddrs["module.boo.foo.to"].UniqueKey(): {
|
||||
instAddrs["module.bar[0].foo.to"],
|
||||
instAddrs["module.boo.foo.to"],
|
||||
},
|
||||
},
|
||||
Blocked: map[addrs.UniqueKey]MoveBlocked{},
|
||||
},
|
||||
[]string{
|
||||
//`foo.from`,
|
||||
//`module.boo.foo.from`,
|
||||
`module.bar[0].foo.to`,
|
||||
`module.boo.foo.from`,
|
||||
`module.boo.foo.to`,
|
||||
},
|
||||
},
|
||||
*/
|
||||
|
||||
// FIXME: This test seems to flap between the result the test case
|
||||
// currently records and the "more intuitive" results included inline,
|
||||
// which suggests we have a missing edge in our move dependency graph.
|
||||
// (The MoveResults commented out below predates some changes to that
|
||||
// struct, so will need updating once we uncomment this test.)
|
||||
/*
|
||||
"module move collides with resource move": {
|
||||
[]MoveStatement{
|
||||
testMoveStatement(t, "", "module.bar[0]", "module.boo"),
|
||||
|
@ -579,30 +586,25 @@ func TestApplyMoves(t *testing.T) {
|
|||
)
|
||||
}),
|
||||
MoveResults{
|
||||
// FIXME: This result is counter-intuitive, because ApplyMoves
|
||||
// handled the resource move first and then it was the
|
||||
// module move that collided, whereas it would arguably have
|
||||
// been better to let the module take priority and have only
|
||||
// the one resource move be ignored due to the collision.
|
||||
// (The arguably-more-intuitive results are commented out
|
||||
// in the maps below.)
|
||||
Changes: map[addrs.UniqueKey]MoveSuccess{
|
||||
//instAddrs["module.boo.foo.from"].UniqueKey(): instAddrs["module.bar[0].foo.from"],
|
||||
instAddrs["module.boo.foo.from"].UniqueKey(): instAddrs["foo.from"],
|
||||
|
||||
instAddrs["module.boo.foo.from"].UniqueKey(): {
|
||||
instAddrs["module.bar[0].foo.from"],
|
||||
instAddrs["module.boo.foo.from"],
|
||||
},
|
||||
},
|
||||
Blocked: map[addrs.UniqueKey]MoveBlocked{
|
||||
//instAddrs["foo.from"].UniqueKey(): instAddrs["module.bar[0].foo.from"],
|
||||
instAddrs["module.bar[0].foo.from"].Module.UniqueKey(): instAddrs["module.boo.foo.from"].Module,
|
||||
instAddrs["foo.from"].ContainingResource().UniqueKey(): {
|
||||
Actual: instAddrs["foo.from"].ContainingResource(),
|
||||
Wanted: instAddrs["module.boo.foo.from"].ContainingResource(),
|
||||
},
|
||||
},
|
||||
},
|
||||
[]string{
|
||||
//`foo.from`,
|
||||
//`module.boo.foo.from`,
|
||||
`module.bar[0].foo.from`,
|
||||
`foo.from`,
|
||||
`module.boo.foo.from`,
|
||||
},
|
||||
},
|
||||
*/
|
||||
}
|
||||
|
||||
for name, test := range tests {
|
||||
|
|
Loading…
Reference in New Issue