Merge pull request #30286 from hashicorp/jbardin/dag
dag: minor cleanup
This commit is contained in:
commit
9272ff2c29
|
@ -2,7 +2,6 @@ package dag
|
|||
|
||||
import (
|
||||
"fmt"
|
||||
"sort"
|
||||
"strings"
|
||||
|
||||
"github.com/hashicorp/terraform/internal/tfdiags"
|
||||
|
@ -89,9 +88,7 @@ func (g *AcyclicGraph) Root() (Vertex, error) {
|
|||
// same graph with only a single edge between A and B, and a single edge
|
||||
// between B and C.
|
||||
//
|
||||
// The graph must be valid for this operation to behave properly. If
|
||||
// Validate() returns an error, the behavior is undefined and the results
|
||||
// will likely be unexpected.
|
||||
// The graph must be free of cycles for this operation to behave properly.
|
||||
//
|
||||
// Complexity: O(V(V+E)), or asymptotically O(VE)
|
||||
func (g *AcyclicGraph) TransitiveReduction() {
|
||||
|
@ -146,6 +143,8 @@ func (g *AcyclicGraph) Validate() error {
|
|||
return err
|
||||
}
|
||||
|
||||
// Cycles reports any cycles between graph nodes.
|
||||
// Self-referencing nodes are not reported, and must be detected separately.
|
||||
func (g *AcyclicGraph) Cycles() [][]Vertex {
|
||||
var cycles [][]Vertex
|
||||
for _, cycle := range StronglyConnected(&g.Graph) {
|
||||
|
@ -181,6 +180,8 @@ type vertexAtDepth struct {
|
|||
|
||||
// DepthFirstWalk does a depth-first walk of the graph starting from
|
||||
// the vertices in start.
|
||||
// The algorithm used here does not do a complete topological sort. To ensure
|
||||
// correct overall ordering run TransitiveReduction first.
|
||||
func (g *AcyclicGraph) DepthFirstWalk(start Set, f DepthWalkFunc) error {
|
||||
seen := make(map[Vertex]struct{})
|
||||
frontier := make([]*vertexAtDepth, 0, len(start))
|
||||
|
@ -218,51 +219,10 @@ func (g *AcyclicGraph) DepthFirstWalk(start Set, f DepthWalkFunc) error {
|
|||
return nil
|
||||
}
|
||||
|
||||
// SortedDepthFirstWalk does a depth-first walk of the graph starting from
|
||||
// the vertices in start, always iterating the nodes in a consistent order.
|
||||
func (g *AcyclicGraph) SortedDepthFirstWalk(start []Vertex, f DepthWalkFunc) error {
|
||||
seen := make(map[Vertex]struct{})
|
||||
frontier := make([]*vertexAtDepth, len(start))
|
||||
for i, v := range start {
|
||||
frontier[i] = &vertexAtDepth{
|
||||
Vertex: v,
|
||||
Depth: 0,
|
||||
}
|
||||
}
|
||||
for len(frontier) > 0 {
|
||||
// Pop the current vertex
|
||||
n := len(frontier)
|
||||
current := frontier[n-1]
|
||||
frontier = frontier[:n-1]
|
||||
|
||||
// Check if we've seen this already and return...
|
||||
if _, ok := seen[current.Vertex]; ok {
|
||||
continue
|
||||
}
|
||||
seen[current.Vertex] = struct{}{}
|
||||
|
||||
// Visit the current node
|
||||
if err := f(current.Vertex, current.Depth); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Visit targets of this in a consistent order.
|
||||
targets := AsVertexList(g.downEdgesNoCopy(current.Vertex))
|
||||
sort.Sort(byVertexName(targets))
|
||||
|
||||
for _, t := range targets {
|
||||
frontier = append(frontier, &vertexAtDepth{
|
||||
Vertex: t,
|
||||
Depth: current.Depth + 1,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// ReverseDepthFirstWalk does a depth-first walk _up_ the graph starting from
|
||||
// the vertices in start.
|
||||
// The algorithm used here does not do a complete topological sort. To ensure
|
||||
// correct overall ordering run TransitiveReduction first.
|
||||
func (g *AcyclicGraph) ReverseDepthFirstWalk(start Set, f DepthWalkFunc) error {
|
||||
seen := make(map[Vertex]struct{})
|
||||
frontier := make([]*vertexAtDepth, 0, len(start))
|
||||
|
@ -299,55 +259,3 @@ func (g *AcyclicGraph) ReverseDepthFirstWalk(start Set, f DepthWalkFunc) error {
|
|||
|
||||
return nil
|
||||
}
|
||||
|
||||
// SortedReverseDepthFirstWalk does a depth-first walk _up_ the graph starting from
|
||||
// the vertices in start, always iterating the nodes in a consistent order.
|
||||
func (g *AcyclicGraph) SortedReverseDepthFirstWalk(start []Vertex, f DepthWalkFunc) error {
|
||||
seen := make(map[Vertex]struct{})
|
||||
frontier := make([]*vertexAtDepth, len(start))
|
||||
for i, v := range start {
|
||||
frontier[i] = &vertexAtDepth{
|
||||
Vertex: v,
|
||||
Depth: 0,
|
||||
}
|
||||
}
|
||||
for len(frontier) > 0 {
|
||||
// Pop the current vertex
|
||||
n := len(frontier)
|
||||
current := frontier[n-1]
|
||||
frontier = frontier[:n-1]
|
||||
|
||||
// Check if we've seen this already and return...
|
||||
if _, ok := seen[current.Vertex]; ok {
|
||||
continue
|
||||
}
|
||||
seen[current.Vertex] = struct{}{}
|
||||
|
||||
// Add next set of targets in a consistent order.
|
||||
targets := AsVertexList(g.upEdgesNoCopy(current.Vertex))
|
||||
sort.Sort(byVertexName(targets))
|
||||
for _, t := range targets {
|
||||
frontier = append(frontier, &vertexAtDepth{
|
||||
Vertex: t,
|
||||
Depth: current.Depth + 1,
|
||||
})
|
||||
}
|
||||
|
||||
// Visit the current node
|
||||
if err := f(current.Vertex, current.Depth); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// byVertexName implements sort.Interface so a list of Vertices can be sorted
|
||||
// consistently by their VertexName
|
||||
type byVertexName []Vertex
|
||||
|
||||
func (b byVertexName) Len() int { return len(b) }
|
||||
func (b byVertexName) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
|
||||
func (b byVertexName) Less(i, j int) bool {
|
||||
return VertexName(b[i]) < VertexName(b[j])
|
||||
}
|
||||
|
|
|
@ -99,6 +99,38 @@ func TestAyclicGraphTransReduction_more(t *testing.T) {
|
|||
}
|
||||
}
|
||||
|
||||
func TestAyclicGraphTransReduction_multipleRoots(t *testing.T) {
|
||||
var g AcyclicGraph
|
||||
g.Add(1)
|
||||
g.Add(2)
|
||||
g.Add(3)
|
||||
g.Add(4)
|
||||
g.Connect(BasicEdge(1, 2))
|
||||
g.Connect(BasicEdge(1, 3))
|
||||
g.Connect(BasicEdge(1, 4))
|
||||
g.Connect(BasicEdge(2, 3))
|
||||
g.Connect(BasicEdge(2, 4))
|
||||
g.Connect(BasicEdge(3, 4))
|
||||
|
||||
g.Add(5)
|
||||
g.Add(6)
|
||||
g.Add(7)
|
||||
g.Add(8)
|
||||
g.Connect(BasicEdge(5, 6))
|
||||
g.Connect(BasicEdge(5, 7))
|
||||
g.Connect(BasicEdge(5, 8))
|
||||
g.Connect(BasicEdge(6, 7))
|
||||
g.Connect(BasicEdge(6, 8))
|
||||
g.Connect(BasicEdge(7, 8))
|
||||
g.TransitiveReduction()
|
||||
|
||||
actual := strings.TrimSpace(g.String())
|
||||
expected := strings.TrimSpace(testGraphTransReductionMultipleRootsStr)
|
||||
if actual != expected {
|
||||
t.Fatalf("bad: %s", actual)
|
||||
}
|
||||
}
|
||||
|
||||
// use this to simulate slow sort operations
|
||||
type counter struct {
|
||||
Name string
|
||||
|
@ -392,7 +424,10 @@ func TestAcyclicGraph_ReverseDepthFirstWalk_WithRemoval(t *testing.T) {
|
|||
|
||||
var visits []Vertex
|
||||
var lock sync.Mutex
|
||||
err := g.SortedReverseDepthFirstWalk([]Vertex{1}, func(v Vertex, d int) error {
|
||||
root := make(Set)
|
||||
root.Add(1)
|
||||
|
||||
err := g.ReverseDepthFirstWalk(root, func(v Vertex, d int) error {
|
||||
lock.Lock()
|
||||
defer lock.Unlock()
|
||||
visits = append(visits, v)
|
||||
|
@ -426,3 +461,20 @@ const testGraphTransReductionMoreStr = `
|
|||
4
|
||||
4
|
||||
`
|
||||
|
||||
const testGraphTransReductionMultipleRootsStr = `
|
||||
1
|
||||
2
|
||||
2
|
||||
3
|
||||
3
|
||||
4
|
||||
4
|
||||
5
|
||||
6
|
||||
6
|
||||
7
|
||||
7
|
||||
8
|
||||
8
|
||||
`
|
||||
|
|
Loading…
Reference in New Issue