dag: staticcheck
This commit is contained in:
parent
89a8624d8c
commit
8925d94387
|
@ -340,7 +340,7 @@ func BenchmarkDAG(b *testing.B) {
|
|||
// layer B
|
||||
for i := 0; i < count; i++ {
|
||||
B := fmt.Sprintf("B%d", i)
|
||||
g.Add(fmt.Sprintf(B))
|
||||
g.Add(B)
|
||||
for j := 0; j < count; j++ {
|
||||
g.Connect(BasicEdge(B, fmt.Sprintf("A%d", j)))
|
||||
}
|
||||
|
@ -349,7 +349,7 @@ func BenchmarkDAG(b *testing.B) {
|
|||
// layer C
|
||||
for i := 0; i < count; i++ {
|
||||
c := fmt.Sprintf("C%d", i)
|
||||
g.Add(fmt.Sprintf(c))
|
||||
g.Add(c)
|
||||
for j := 0; j < count; j++ {
|
||||
// connect them to previous layers so we have something that requires reduction
|
||||
g.Connect(BasicEdge(c, fmt.Sprintf("A%d", j)))
|
||||
|
@ -360,7 +360,7 @@ func BenchmarkDAG(b *testing.B) {
|
|||
// layer D
|
||||
for i := 0; i < count; i++ {
|
||||
d := fmt.Sprintf("D%d", i)
|
||||
g.Add(fmt.Sprintf(d))
|
||||
g.Add(d)
|
||||
for j := 0; j < count; j++ {
|
||||
g.Connect(BasicEdge(d, fmt.Sprintf("A%d", j)))
|
||||
g.Connect(BasicEdge(d, fmt.Sprintf("B%d", j)))
|
||||
|
|
|
@ -337,7 +337,7 @@ func VertexName(raw Vertex) string {
|
|||
case NamedVertex:
|
||||
return v.Name()
|
||||
case fmt.Stringer:
|
||||
return fmt.Sprintf("%s", v)
|
||||
return v.String()
|
||||
default:
|
||||
return fmt.Sprintf("%v", v)
|
||||
}
|
||||
|
|
|
@ -7,18 +7,6 @@ import (
|
|||
"strconv"
|
||||
)
|
||||
|
||||
const (
|
||||
typeOperation = "Operation"
|
||||
typeTransform = "Transform"
|
||||
typeWalk = "Walk"
|
||||
typeDepthFirstWalk = "DepthFirstWalk"
|
||||
typeReverseDepthFirstWalk = "ReverseDepthFirstWalk"
|
||||
typeTransitiveReduction = "TransitiveReduction"
|
||||
typeEdgeInfo = "EdgeInfo"
|
||||
typeVertexInfo = "VertexInfo"
|
||||
typeVisitInfo = "VisitInfo"
|
||||
)
|
||||
|
||||
// the marshal* structs are for serialization of the graph data.
|
||||
type marshalGraph struct {
|
||||
// Type is always "Graph", for identification as a top level object in the
|
||||
|
@ -49,36 +37,6 @@ type marshalGraph struct {
|
|||
Cycles [][]*marshalVertex `json:",omitempty"`
|
||||
}
|
||||
|
||||
// The add, remove, connect, removeEdge methods mirror the basic Graph
|
||||
// manipulations to reconstruct a marshalGraph from a debug log.
|
||||
func (g *marshalGraph) add(v *marshalVertex) {
|
||||
g.Vertices = append(g.Vertices, v)
|
||||
sort.Sort(vertices(g.Vertices))
|
||||
}
|
||||
|
||||
func (g *marshalGraph) remove(v *marshalVertex) {
|
||||
for i, existing := range g.Vertices {
|
||||
if v.ID == existing.ID {
|
||||
g.Vertices = append(g.Vertices[:i], g.Vertices[i+1:]...)
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (g *marshalGraph) connect(e *marshalEdge) {
|
||||
g.Edges = append(g.Edges, e)
|
||||
sort.Sort(edges(g.Edges))
|
||||
}
|
||||
|
||||
func (g *marshalGraph) removeEdge(e *marshalEdge) {
|
||||
for i, existing := range g.Edges {
|
||||
if e.Source == existing.Source && e.Target == existing.Target {
|
||||
g.Edges = append(g.Edges[:i], g.Edges[i+1:]...)
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (g *marshalGraph) vertexByID(id string) *marshalVertex {
|
||||
for _, v := range g.Vertices {
|
||||
if id == v.ID {
|
||||
|
|
|
@ -56,7 +56,6 @@ func (s Set) Intersection(other Set) Set {
|
|||
// other doesn't.
|
||||
func (s Set) Difference(other Set) Set {
|
||||
result := make(Set)
|
||||
if s != nil {
|
||||
for k, v := range s {
|
||||
var ok bool
|
||||
if other != nil {
|
||||
|
@ -66,7 +65,6 @@ func (s Set) Difference(other Set) Set {
|
|||
result.Add(v)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return result
|
||||
}
|
||||
|
|
|
@ -106,11 +106,6 @@ type walkerVertex struct {
|
|||
depsCancelCh chan struct{}
|
||||
}
|
||||
|
||||
// errWalkUpstream is used in the errMap of a walk to note that an upstream
|
||||
// dependency failed so this vertex wasn't run. This is not shown in the final
|
||||
// user-returned error.
|
||||
var errWalkUpstream = errors.New("upstream dependency failed")
|
||||
|
||||
// Wait waits for the completion of the walk and returns diagnostics describing
|
||||
// any problems that arose. Update should be called to populate the walk with
|
||||
// vertices and edges prior to calling this.
|
||||
|
|
|
@ -1,89 +0,0 @@
|
|||
package digraph
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// BasicNode is a digraph Node that has a name and out edges
|
||||
type BasicNode struct {
|
||||
Name string
|
||||
NodeEdges []Edge
|
||||
}
|
||||
|
||||
func (b *BasicNode) Edges() []Edge {
|
||||
return b.NodeEdges
|
||||
}
|
||||
|
||||
func (b *BasicNode) AddEdge(edge Edge) {
|
||||
b.NodeEdges = append(b.NodeEdges, edge)
|
||||
}
|
||||
|
||||
func (b *BasicNode) String() string {
|
||||
if b.Name == "" {
|
||||
return "Node"
|
||||
}
|
||||
return fmt.Sprintf("%v", b.Name)
|
||||
}
|
||||
|
||||
// BasicEdge is a digraph Edge that has a name, head and tail
|
||||
type BasicEdge struct {
|
||||
Name string
|
||||
EdgeHead *BasicNode
|
||||
EdgeTail *BasicNode
|
||||
}
|
||||
|
||||
func (b *BasicEdge) Head() Node {
|
||||
return b.EdgeHead
|
||||
}
|
||||
|
||||
// Tail returns the end point of the Edge
|
||||
func (b *BasicEdge) Tail() Node {
|
||||
return b.EdgeTail
|
||||
}
|
||||
|
||||
func (b *BasicEdge) String() string {
|
||||
if b.Name == "" {
|
||||
return "Edge"
|
||||
}
|
||||
return fmt.Sprintf("%v", b.Name)
|
||||
}
|
||||
|
||||
// ParseBasic is used to parse a string in the format of:
|
||||
// a -> b ; edge name
|
||||
// b -> c
|
||||
// Into a series of basic node and basic edges
|
||||
func ParseBasic(s string) map[string]*BasicNode {
|
||||
lines := strings.Split(s, "\n")
|
||||
nodes := make(map[string]*BasicNode)
|
||||
for _, line := range lines {
|
||||
var edgeName string
|
||||
if idx := strings.Index(line, ";"); idx >= 0 {
|
||||
edgeName = strings.Trim(line[idx+1:], " \t\r\n")
|
||||
line = line[:idx]
|
||||
}
|
||||
parts := strings.SplitN(line, "->", 2)
|
||||
if len(parts) != 2 {
|
||||
continue
|
||||
}
|
||||
head_name := strings.Trim(parts[0], " \t\r\n")
|
||||
tail_name := strings.Trim(parts[1], " \t\r\n")
|
||||
head := nodes[head_name]
|
||||
if head == nil {
|
||||
head = &BasicNode{Name: head_name}
|
||||
nodes[head_name] = head
|
||||
}
|
||||
tail := nodes[tail_name]
|
||||
if tail == nil {
|
||||
tail = &BasicNode{Name: tail_name}
|
||||
nodes[tail_name] = tail
|
||||
}
|
||||
edge := &BasicEdge{
|
||||
Name: edgeName,
|
||||
EdgeHead: head,
|
||||
EdgeTail: tail,
|
||||
}
|
||||
head.AddEdge(edge)
|
||||
}
|
||||
return nodes
|
||||
}
|
|
@ -1,53 +0,0 @@
|
|||
package digraph
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestParseBasic(t *testing.T) {
|
||||
spec := `a -> b ; first
|
||||
b -> c ; second
|
||||
b -> d ; third
|
||||
z -> a`
|
||||
nodes := ParseBasic(spec)
|
||||
if len(nodes) != 5 {
|
||||
t.Fatalf("bad: %v", nodes)
|
||||
}
|
||||
|
||||
a := nodes["a"]
|
||||
if a.Name != "a" {
|
||||
t.Fatalf("bad: %v", a)
|
||||
}
|
||||
aEdges := a.Edges()
|
||||
if len(aEdges) != 1 {
|
||||
t.Fatalf("bad: %v", a.Edges())
|
||||
}
|
||||
if fmt.Sprintf("%v", aEdges[0]) != "first" {
|
||||
t.Fatalf("bad: %v", aEdges[0])
|
||||
}
|
||||
|
||||
b := nodes["b"]
|
||||
if len(b.Edges()) != 2 {
|
||||
t.Fatalf("bad: %v", b.Edges())
|
||||
}
|
||||
|
||||
c := nodes["c"]
|
||||
if len(c.Edges()) != 0 {
|
||||
t.Fatalf("bad: %v", c.Edges())
|
||||
}
|
||||
|
||||
d := nodes["d"]
|
||||
if len(d.Edges()) != 0 {
|
||||
t.Fatalf("bad: %v", d.Edges())
|
||||
}
|
||||
|
||||
z := nodes["z"]
|
||||
zEdges := z.Edges()
|
||||
if len(zEdges) != 1 {
|
||||
t.Fatalf("bad: %v", z.Edges())
|
||||
}
|
||||
if fmt.Sprintf("%v", zEdges[0]) != "Edge" {
|
||||
t.Fatalf("bad: %v", zEdges[0])
|
||||
}
|
||||
}
|
|
@ -1,34 +0,0 @@
|
|||
package digraph
|
||||
|
||||
// Digraph is used to represent a Directed Graph. This means
|
||||
// we have a set of nodes, and a set of edges which are directed
|
||||
// from a source and towards a destination
|
||||
type Digraph interface {
|
||||
// Nodes provides all the nodes in the graph
|
||||
Nodes() []Node
|
||||
|
||||
// Sources provides all the source nodes in the graph
|
||||
Sources() []Node
|
||||
|
||||
// Sinks provides all the sink nodes in the graph
|
||||
Sinks() []Node
|
||||
|
||||
// Transpose reverses the edge directions and returns
|
||||
// a new Digraph
|
||||
Transpose() Digraph
|
||||
}
|
||||
|
||||
// Node represents a vertex in a Digraph
|
||||
type Node interface {
|
||||
// Edges returns the out edges for a given nod
|
||||
Edges() []Edge
|
||||
}
|
||||
|
||||
// Edge represents a directed edge in a Digraph
|
||||
type Edge interface {
|
||||
// Head returns the start point of the Edge
|
||||
Head() Node
|
||||
|
||||
// Tail returns the end point of the Edge
|
||||
Tail() Node
|
||||
}
|
|
@ -1,28 +0,0 @@
|
|||
package digraph
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"io"
|
||||
)
|
||||
|
||||
// WriteDot is used to emit a GraphViz compatible definition
|
||||
// for a directed graph. It can be used to dump a .dot file.
|
||||
func WriteDot(w io.Writer, nodes []Node) error {
|
||||
w.Write([]byte("digraph {\n"))
|
||||
defer w.Write([]byte("}\n"))
|
||||
|
||||
for _, n := range nodes {
|
||||
nodeLine := fmt.Sprintf("\t\"%s\";\n", n)
|
||||
|
||||
w.Write([]byte(nodeLine))
|
||||
|
||||
for _, edge := range n.Edges() {
|
||||
target := edge.Tail()
|
||||
line := fmt.Sprintf("\t\"%s\" -> \"%s\" [label=\"%s\"];\n",
|
||||
n, target, edge)
|
||||
w.Write([]byte(line))
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
|
@ -1,64 +0,0 @@
|
|||
package digraph
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"strings"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestWriteDot(t *testing.T) {
|
||||
nodes := ParseBasic(`a -> b ; foo
|
||||
a -> c
|
||||
b -> d
|
||||
b -> e
|
||||
`)
|
||||
var nlist []Node
|
||||
for _, n := range nodes {
|
||||
nlist = append(nlist, n)
|
||||
}
|
||||
|
||||
buf := bytes.NewBuffer(nil)
|
||||
if err := WriteDot(buf, nlist); err != nil {
|
||||
t.Fatalf("err: %s", err)
|
||||
}
|
||||
|
||||
actual := strings.TrimSpace(string(buf.Bytes()))
|
||||
expected := strings.TrimSpace(writeDotStr)
|
||||
|
||||
actualLines := strings.Split(actual, "\n")
|
||||
expectedLines := strings.Split(expected, "\n")
|
||||
|
||||
if actualLines[0] != expectedLines[0] ||
|
||||
actualLines[len(actualLines)-1] != expectedLines[len(expectedLines)-1] ||
|
||||
len(actualLines) != len(expectedLines) {
|
||||
t.Fatalf("bad: %s", actual)
|
||||
}
|
||||
|
||||
count := 0
|
||||
for _, el := range expectedLines[1 : len(expectedLines)-1] {
|
||||
for _, al := range actualLines[1 : len(actualLines)-1] {
|
||||
if el == al {
|
||||
count++
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if count != len(expectedLines)-2 {
|
||||
t.Fatalf("bad: %s", actual)
|
||||
}
|
||||
}
|
||||
|
||||
const writeDotStr = `
|
||||
digraph {
|
||||
"a";
|
||||
"a" -> "b" [label="foo"];
|
||||
"a" -> "c" [label="Edge"];
|
||||
"b";
|
||||
"b" -> "d" [label="Edge"];
|
||||
"b" -> "e" [label="Edge"];
|
||||
"c";
|
||||
"d";
|
||||
"e";
|
||||
}
|
||||
`
|
|
@ -1,111 +0,0 @@
|
|||
package digraph
|
||||
|
||||
// sccAcct is used ot pass around accounting information for
|
||||
// the StronglyConnectedComponents algorithm
|
||||
type sccAcct struct {
|
||||
ExcludeSingle bool
|
||||
NextIndex int
|
||||
NodeIndex map[Node]int
|
||||
Stack []Node
|
||||
SCC [][]Node
|
||||
}
|
||||
|
||||
// visit assigns an index and pushes a node onto the stack
|
||||
func (s *sccAcct) visit(n Node) int {
|
||||
idx := s.NextIndex
|
||||
s.NodeIndex[n] = idx
|
||||
s.NextIndex++
|
||||
s.push(n)
|
||||
return idx
|
||||
}
|
||||
|
||||
// push adds a node to the stack
|
||||
func (s *sccAcct) push(n Node) {
|
||||
s.Stack = append(s.Stack, n)
|
||||
}
|
||||
|
||||
// pop removes a node from the stack
|
||||
func (s *sccAcct) pop() Node {
|
||||
n := len(s.Stack)
|
||||
if n == 0 {
|
||||
return nil
|
||||
}
|
||||
node := s.Stack[n-1]
|
||||
s.Stack = s.Stack[:n-1]
|
||||
return node
|
||||
}
|
||||
|
||||
// inStack checks if a node is in the stack
|
||||
func (s *sccAcct) inStack(needle Node) bool {
|
||||
for _, n := range s.Stack {
|
||||
if n == needle {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// StronglyConnectedComponents implements Tarjan's algorithm to
|
||||
// find all the strongly connected components in a graph. This can
|
||||
// be used to detected any cycles in a graph, as well as which nodes
|
||||
// partipate in those cycles. excludeSingle is used to exclude strongly
|
||||
// connected components of size one.
|
||||
func StronglyConnectedComponents(nodes []Node, excludeSingle bool) [][]Node {
|
||||
acct := sccAcct{
|
||||
ExcludeSingle: excludeSingle,
|
||||
NextIndex: 1,
|
||||
NodeIndex: make(map[Node]int, len(nodes)),
|
||||
}
|
||||
for _, node := range nodes {
|
||||
// Recurse on any non-visited nodes
|
||||
if acct.NodeIndex[node] == 0 {
|
||||
stronglyConnected(&acct, node)
|
||||
}
|
||||
}
|
||||
return acct.SCC
|
||||
}
|
||||
|
||||
func stronglyConnected(acct *sccAcct, node Node) int {
|
||||
// Initial node visit
|
||||
index := acct.visit(node)
|
||||
minIdx := index
|
||||
|
||||
for _, edge := range node.Edges() {
|
||||
target := edge.Tail()
|
||||
targetIdx := acct.NodeIndex[target]
|
||||
|
||||
// Recurse on successor if not yet visited
|
||||
if targetIdx == 0 {
|
||||
minIdx = min(minIdx, stronglyConnected(acct, target))
|
||||
|
||||
} else if acct.inStack(target) {
|
||||
// Check if the node is in the stack
|
||||
minIdx = min(minIdx, targetIdx)
|
||||
}
|
||||
}
|
||||
|
||||
// Pop the strongly connected components off the stack if
|
||||
// this is a root node
|
||||
if index == minIdx {
|
||||
var scc []Node
|
||||
for {
|
||||
n := acct.pop()
|
||||
scc = append(scc, n)
|
||||
if n == node {
|
||||
break
|
||||
}
|
||||
}
|
||||
if !(acct.ExcludeSingle && len(scc) == 1) {
|
||||
acct.SCC = append(acct.SCC, scc)
|
||||
}
|
||||
}
|
||||
|
||||
return minIdx
|
||||
}
|
||||
|
||||
func min(a, b int) int {
|
||||
if a <= b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
|
@ -1,82 +0,0 @@
|
|||
package digraph
|
||||
|
||||
import (
|
||||
"reflect"
|
||||
"sort"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestStronglyConnectedComponents(t *testing.T) {
|
||||
nodes := ParseBasic(`a -> b
|
||||
a -> c
|
||||
b -> c
|
||||
c -> b
|
||||
c -> d
|
||||
d -> e`)
|
||||
var nlist []Node
|
||||
for _, n := range nodes {
|
||||
nlist = append(nlist, n)
|
||||
}
|
||||
|
||||
sccs := StronglyConnectedComponents(nlist, false)
|
||||
if len(sccs) != 4 {
|
||||
t.Fatalf("bad: %v", sccs)
|
||||
}
|
||||
|
||||
sccs = StronglyConnectedComponents(nlist, true)
|
||||
if len(sccs) != 1 {
|
||||
t.Fatalf("bad: %v", sccs)
|
||||
}
|
||||
|
||||
cycle := sccs[0]
|
||||
if len(cycle) != 2 {
|
||||
t.Fatalf("bad: %v", sccs)
|
||||
}
|
||||
|
||||
cycleNodes := make([]string, len(cycle))
|
||||
for i, c := range cycle {
|
||||
cycleNodes[i] = c.(*BasicNode).Name
|
||||
}
|
||||
sort.Strings(cycleNodes)
|
||||
|
||||
expected := []string{"b", "c"}
|
||||
if !reflect.DeepEqual(cycleNodes, expected) {
|
||||
t.Fatalf("bad: %#v", cycleNodes)
|
||||
}
|
||||
}
|
||||
|
||||
func TestStronglyConnectedComponents2(t *testing.T) {
|
||||
nodes := ParseBasic(`a -> b
|
||||
a -> c
|
||||
b -> d
|
||||
b -> e
|
||||
c -> f
|
||||
c -> g
|
||||
g -> a
|
||||
`)
|
||||
var nlist []Node
|
||||
for _, n := range nodes {
|
||||
nlist = append(nlist, n)
|
||||
}
|
||||
|
||||
sccs := StronglyConnectedComponents(nlist, true)
|
||||
if len(sccs) != 1 {
|
||||
t.Fatalf("bad: %v", sccs)
|
||||
}
|
||||
|
||||
cycle := sccs[0]
|
||||
if len(cycle) != 3 {
|
||||
t.Fatalf("bad: %v", sccs)
|
||||
}
|
||||
|
||||
cycleNodes := make([]string, len(cycle))
|
||||
for i, c := range cycle {
|
||||
cycleNodes[i] = c.(*BasicNode).Name
|
||||
}
|
||||
sort.Strings(cycleNodes)
|
||||
|
||||
expected := []string{"a", "c", "g"}
|
||||
if !reflect.DeepEqual(cycleNodes, expected) {
|
||||
t.Fatalf("bad: %#v", cycleNodes)
|
||||
}
|
||||
}
|
113
digraph/util.go
113
digraph/util.go
|
@ -1,113 +0,0 @@
|
|||
package digraph
|
||||
|
||||
// DepthFirstWalk performs a depth-first traversal of the nodes
|
||||
// that can be reached from the initial input set. The callback is
|
||||
// invoked for each visited node, and may return false to prevent
|
||||
// vising any children of the current node
|
||||
func DepthFirstWalk(node Node, cb func(n Node) bool) {
|
||||
frontier := []Node{node}
|
||||
seen := make(map[Node]struct{})
|
||||
for len(frontier) > 0 {
|
||||
// Pop the current node
|
||||
n := len(frontier)
|
||||
current := frontier[n-1]
|
||||
frontier = frontier[:n-1]
|
||||
|
||||
// Check for potential cycle
|
||||
if _, ok := seen[current]; ok {
|
||||
continue
|
||||
}
|
||||
seen[current] = struct{}{}
|
||||
|
||||
// Visit with the callback
|
||||
if !cb(current) {
|
||||
continue
|
||||
}
|
||||
|
||||
// Add any new edges to visit, in reverse order
|
||||
edges := current.Edges()
|
||||
for i := len(edges) - 1; i >= 0; i-- {
|
||||
frontier = append(frontier, edges[i].Tail())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FilterDegree returns only the nodes with the desired
|
||||
// degree. This can be used with OutDegree or InDegree
|
||||
func FilterDegree(degree int, degrees map[Node]int) []Node {
|
||||
var matching []Node
|
||||
for n, d := range degrees {
|
||||
if d == degree {
|
||||
matching = append(matching, n)
|
||||
}
|
||||
}
|
||||
return matching
|
||||
}
|
||||
|
||||
// InDegree is used to compute the in-degree of nodes
|
||||
func InDegree(nodes []Node) map[Node]int {
|
||||
degree := make(map[Node]int, len(nodes))
|
||||
for _, n := range nodes {
|
||||
if _, ok := degree[n]; !ok {
|
||||
degree[n] = 0
|
||||
}
|
||||
for _, e := range n.Edges() {
|
||||
degree[e.Tail()]++
|
||||
}
|
||||
}
|
||||
return degree
|
||||
}
|
||||
|
||||
// OutDegree is used to compute the in-degree of nodes
|
||||
func OutDegree(nodes []Node) map[Node]int {
|
||||
degree := make(map[Node]int, len(nodes))
|
||||
for _, n := range nodes {
|
||||
degree[n] = len(n.Edges())
|
||||
}
|
||||
return degree
|
||||
}
|
||||
|
||||
// Sinks is used to get the nodes with out-degree of 0
|
||||
func Sinks(nodes []Node) []Node {
|
||||
return FilterDegree(0, OutDegree(nodes))
|
||||
}
|
||||
|
||||
// Sources is used to get the nodes with in-degree of 0
|
||||
func Sources(nodes []Node) []Node {
|
||||
return FilterDegree(0, InDegree(nodes))
|
||||
}
|
||||
|
||||
// Unreachable starts at a given start node, performs
|
||||
// a DFS from there, and returns the set of unreachable nodes.
|
||||
func Unreachable(start Node, nodes []Node) []Node {
|
||||
// DFS from the start ndoe
|
||||
frontier := []Node{start}
|
||||
seen := make(map[Node]struct{})
|
||||
for len(frontier) > 0 {
|
||||
// Pop the current node
|
||||
n := len(frontier)
|
||||
current := frontier[n-1]
|
||||
frontier = frontier[:n-1]
|
||||
|
||||
// Check for potential cycle
|
||||
if _, ok := seen[current]; ok {
|
||||
continue
|
||||
}
|
||||
seen[current] = struct{}{}
|
||||
|
||||
// Add any new edges to visit, in reverse order
|
||||
edges := current.Edges()
|
||||
for i := len(edges) - 1; i >= 0; i-- {
|
||||
frontier = append(frontier, edges[i].Tail())
|
||||
}
|
||||
}
|
||||
|
||||
// Check for any unseen nodes
|
||||
var unseen []Node
|
||||
for _, node := range nodes {
|
||||
if _, ok := seen[node]; !ok {
|
||||
unseen = append(unseen, node)
|
||||
}
|
||||
}
|
||||
return unseen
|
||||
}
|
|
@ -1,233 +0,0 @@
|
|||
package digraph
|
||||
|
||||
import (
|
||||
"reflect"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestDepthFirstWalk(t *testing.T) {
|
||||
nodes := ParseBasic(`a -> b
|
||||
a -> c
|
||||
a -> d
|
||||
b -> e
|
||||
d -> f
|
||||
e -> a ; cycle`)
|
||||
root := nodes["a"]
|
||||
expected := []string{
|
||||
"a",
|
||||
"b",
|
||||
"e",
|
||||
"c",
|
||||
"d",
|
||||
"f",
|
||||
}
|
||||
index := 0
|
||||
DepthFirstWalk(root, func(n Node) bool {
|
||||
name := n.(*BasicNode).Name
|
||||
if expected[index] != name {
|
||||
t.Fatalf("expected: %v, got %v", expected[index], name)
|
||||
}
|
||||
index++
|
||||
return true
|
||||
})
|
||||
}
|
||||
|
||||
func TestInDegree(t *testing.T) {
|
||||
nodes := ParseBasic(`a -> b
|
||||
a -> c
|
||||
a -> d
|
||||
b -> e
|
||||
c -> e
|
||||
d -> f`)
|
||||
var nlist []Node
|
||||
for _, n := range nodes {
|
||||
nlist = append(nlist, n)
|
||||
}
|
||||
|
||||
expected := map[string]int{
|
||||
"a": 0,
|
||||
"b": 1,
|
||||
"c": 1,
|
||||
"d": 1,
|
||||
"e": 2,
|
||||
"f": 1,
|
||||
}
|
||||
indegree := InDegree(nlist)
|
||||
for n, d := range indegree {
|
||||
name := n.(*BasicNode).Name
|
||||
exp := expected[name]
|
||||
if exp != d {
|
||||
t.Fatalf("Expected %d for %s, got %d",
|
||||
exp, name, d)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestOutDegree(t *testing.T) {
|
||||
nodes := ParseBasic(`a -> b
|
||||
a -> c
|
||||
a -> d
|
||||
b -> e
|
||||
c -> e
|
||||
d -> f`)
|
||||
var nlist []Node
|
||||
for _, n := range nodes {
|
||||
nlist = append(nlist, n)
|
||||
}
|
||||
|
||||
expected := map[string]int{
|
||||
"a": 3,
|
||||
"b": 1,
|
||||
"c": 1,
|
||||
"d": 1,
|
||||
"e": 0,
|
||||
"f": 0,
|
||||
}
|
||||
outDegree := OutDegree(nlist)
|
||||
for n, d := range outDegree {
|
||||
name := n.(*BasicNode).Name
|
||||
exp := expected[name]
|
||||
if exp != d {
|
||||
t.Fatalf("Expected %d for %s, got %d",
|
||||
exp, name, d)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestSinks(t *testing.T) {
|
||||
nodes := ParseBasic(`a -> b
|
||||
a -> c
|
||||
a -> d
|
||||
b -> e
|
||||
c -> e
|
||||
d -> f`)
|
||||
var nlist []Node
|
||||
for _, n := range nodes {
|
||||
nlist = append(nlist, n)
|
||||
}
|
||||
|
||||
sinks := Sinks(nlist)
|
||||
|
||||
var haveE, haveF bool
|
||||
for _, n := range sinks {
|
||||
name := n.(*BasicNode).Name
|
||||
switch name {
|
||||
case "e":
|
||||
haveE = true
|
||||
case "f":
|
||||
haveF = true
|
||||
}
|
||||
}
|
||||
if !haveE || !haveF {
|
||||
t.Fatalf("missing sink")
|
||||
}
|
||||
}
|
||||
|
||||
func TestSources(t *testing.T) {
|
||||
nodes := ParseBasic(`a -> b
|
||||
a -> c
|
||||
a -> d
|
||||
b -> e
|
||||
c -> e
|
||||
d -> f
|
||||
x -> y`)
|
||||
var nlist []Node
|
||||
for _, n := range nodes {
|
||||
nlist = append(nlist, n)
|
||||
}
|
||||
|
||||
sources := Sources(nlist)
|
||||
if len(sources) != 2 {
|
||||
t.Fatalf("bad: %v", sources)
|
||||
}
|
||||
|
||||
var haveA, haveX bool
|
||||
for _, n := range sources {
|
||||
name := n.(*BasicNode).Name
|
||||
switch name {
|
||||
case "a":
|
||||
haveA = true
|
||||
case "x":
|
||||
haveX = true
|
||||
}
|
||||
}
|
||||
if !haveA || !haveX {
|
||||
t.Fatalf("missing source %v %v", haveA, haveX)
|
||||
}
|
||||
}
|
||||
|
||||
func TestUnreachable(t *testing.T) {
|
||||
nodes := ParseBasic(`a -> b
|
||||
a -> c
|
||||
a -> d
|
||||
b -> e
|
||||
c -> e
|
||||
d -> f
|
||||
f -> a
|
||||
x -> y
|
||||
y -> z`)
|
||||
var nlist []Node
|
||||
for _, n := range nodes {
|
||||
nlist = append(nlist, n)
|
||||
}
|
||||
|
||||
unreached := Unreachable(nodes["a"], nlist)
|
||||
if len(unreached) != 3 {
|
||||
t.Fatalf("bad: %v", unreached)
|
||||
}
|
||||
|
||||
var haveX, haveY, haveZ bool
|
||||
for _, n := range unreached {
|
||||
name := n.(*BasicNode).Name
|
||||
switch name {
|
||||
case "x":
|
||||
haveX = true
|
||||
case "y":
|
||||
haveY = true
|
||||
case "z":
|
||||
haveZ = true
|
||||
}
|
||||
}
|
||||
if !haveX || !haveY || !haveZ {
|
||||
t.Fatalf("missing %v %v %v", haveX, haveY, haveZ)
|
||||
}
|
||||
}
|
||||
|
||||
func TestUnreachable2(t *testing.T) {
|
||||
nodes := ParseBasic(`a -> b
|
||||
a -> c
|
||||
a -> d
|
||||
b -> e
|
||||
c -> e
|
||||
d -> f
|
||||
f -> a
|
||||
x -> y
|
||||
y -> z`)
|
||||
var nlist []Node
|
||||
for _, n := range nodes {
|
||||
nlist = append(nlist, n)
|
||||
}
|
||||
|
||||
unreached := Unreachable(nodes["x"], nlist)
|
||||
if len(unreached) != 6 {
|
||||
t.Fatalf("bad: %v", unreached)
|
||||
}
|
||||
|
||||
expected := map[string]struct{}{
|
||||
"a": struct{}{},
|
||||
"b": struct{}{},
|
||||
"c": struct{}{},
|
||||
"d": struct{}{},
|
||||
"e": struct{}{},
|
||||
"f": struct{}{},
|
||||
}
|
||||
out := map[string]struct{}{}
|
||||
for _, n := range unreached {
|
||||
name := n.(*BasicNode).Name
|
||||
out[name] = struct{}{}
|
||||
}
|
||||
|
||||
if !reflect.DeepEqual(out, expected) {
|
||||
t.Fatalf("bad: %v %v", out, expected)
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue