dag: staticcheck

This commit is contained in:
James Bardin 2020-12-01 16:34:03 -05:00
parent 89a8624d8c
commit 8925d94387
14 changed files with 11 additions and 867 deletions

View File

@ -340,7 +340,7 @@ func BenchmarkDAG(b *testing.B) {
// layer B
for i := 0; i < count; i++ {
B := fmt.Sprintf("B%d", i)
g.Add(fmt.Sprintf(B))
g.Add(B)
for j := 0; j < count; j++ {
g.Connect(BasicEdge(B, fmt.Sprintf("A%d", j)))
}
@ -349,7 +349,7 @@ func BenchmarkDAG(b *testing.B) {
// layer C
for i := 0; i < count; i++ {
c := fmt.Sprintf("C%d", i)
g.Add(fmt.Sprintf(c))
g.Add(c)
for j := 0; j < count; j++ {
// connect them to previous layers so we have something that requires reduction
g.Connect(BasicEdge(c, fmt.Sprintf("A%d", j)))
@ -360,7 +360,7 @@ func BenchmarkDAG(b *testing.B) {
// layer D
for i := 0; i < count; i++ {
d := fmt.Sprintf("D%d", i)
g.Add(fmt.Sprintf(d))
g.Add(d)
for j := 0; j < count; j++ {
g.Connect(BasicEdge(d, fmt.Sprintf("A%d", j)))
g.Connect(BasicEdge(d, fmt.Sprintf("B%d", j)))

View File

@ -337,7 +337,7 @@ func VertexName(raw Vertex) string {
case NamedVertex:
return v.Name()
case fmt.Stringer:
return fmt.Sprintf("%s", v)
return v.String()
default:
return fmt.Sprintf("%v", v)
}

View File

@ -7,18 +7,6 @@ import (
"strconv"
)
const (
typeOperation = "Operation"
typeTransform = "Transform"
typeWalk = "Walk"
typeDepthFirstWalk = "DepthFirstWalk"
typeReverseDepthFirstWalk = "ReverseDepthFirstWalk"
typeTransitiveReduction = "TransitiveReduction"
typeEdgeInfo = "EdgeInfo"
typeVertexInfo = "VertexInfo"
typeVisitInfo = "VisitInfo"
)
// the marshal* structs are for serialization of the graph data.
type marshalGraph struct {
// Type is always "Graph", for identification as a top level object in the
@ -49,36 +37,6 @@ type marshalGraph struct {
Cycles [][]*marshalVertex `json:",omitempty"`
}
// The add, remove, connect, removeEdge methods mirror the basic Graph
// manipulations to reconstruct a marshalGraph from a debug log.
func (g *marshalGraph) add(v *marshalVertex) {
g.Vertices = append(g.Vertices, v)
sort.Sort(vertices(g.Vertices))
}
func (g *marshalGraph) remove(v *marshalVertex) {
for i, existing := range g.Vertices {
if v.ID == existing.ID {
g.Vertices = append(g.Vertices[:i], g.Vertices[i+1:]...)
return
}
}
}
func (g *marshalGraph) connect(e *marshalEdge) {
g.Edges = append(g.Edges, e)
sort.Sort(edges(g.Edges))
}
func (g *marshalGraph) removeEdge(e *marshalEdge) {
for i, existing := range g.Edges {
if e.Source == existing.Source && e.Target == existing.Target {
g.Edges = append(g.Edges[:i], g.Edges[i+1:]...)
return
}
}
}
func (g *marshalGraph) vertexByID(id string) *marshalVertex {
for _, v := range g.Vertices {
if id == v.ID {

View File

@ -56,15 +56,13 @@ func (s Set) Intersection(other Set) Set {
// other doesn't.
func (s Set) Difference(other Set) Set {
result := make(Set)
if s != nil {
for k, v := range s {
var ok bool
if other != nil {
_, ok = other[k]
}
if !ok {
result.Add(v)
}
for k, v := range s {
var ok bool
if other != nil {
_, ok = other[k]
}
if !ok {
result.Add(v)
}
}

View File

@ -106,11 +106,6 @@ type walkerVertex struct {
depsCancelCh chan struct{}
}
// errWalkUpstream is used in the errMap of a walk to note that an upstream
// dependency failed so this vertex wasn't run. This is not shown in the final
// user-returned error.
var errWalkUpstream = errors.New("upstream dependency failed")
// Wait waits for the completion of the walk and returns diagnostics describing
// any problems that arose. Update should be called to populate the walk with
// vertices and edges prior to calling this.

View File

@ -1,89 +0,0 @@
package digraph
import (
"fmt"
"strings"
)
// BasicNode is a digraph Node that has a name and out edges
type BasicNode struct {
Name string
NodeEdges []Edge
}
func (b *BasicNode) Edges() []Edge {
return b.NodeEdges
}
func (b *BasicNode) AddEdge(edge Edge) {
b.NodeEdges = append(b.NodeEdges, edge)
}
func (b *BasicNode) String() string {
if b.Name == "" {
return "Node"
}
return fmt.Sprintf("%v", b.Name)
}
// BasicEdge is a digraph Edge that has a name, head and tail
type BasicEdge struct {
Name string
EdgeHead *BasicNode
EdgeTail *BasicNode
}
func (b *BasicEdge) Head() Node {
return b.EdgeHead
}
// Tail returns the end point of the Edge
func (b *BasicEdge) Tail() Node {
return b.EdgeTail
}
func (b *BasicEdge) String() string {
if b.Name == "" {
return "Edge"
}
return fmt.Sprintf("%v", b.Name)
}
// ParseBasic is used to parse a string in the format of:
// a -> b ; edge name
// b -> c
// Into a series of basic node and basic edges
func ParseBasic(s string) map[string]*BasicNode {
lines := strings.Split(s, "\n")
nodes := make(map[string]*BasicNode)
for _, line := range lines {
var edgeName string
if idx := strings.Index(line, ";"); idx >= 0 {
edgeName = strings.Trim(line[idx+1:], " \t\r\n")
line = line[:idx]
}
parts := strings.SplitN(line, "->", 2)
if len(parts) != 2 {
continue
}
head_name := strings.Trim(parts[0], " \t\r\n")
tail_name := strings.Trim(parts[1], " \t\r\n")
head := nodes[head_name]
if head == nil {
head = &BasicNode{Name: head_name}
nodes[head_name] = head
}
tail := nodes[tail_name]
if tail == nil {
tail = &BasicNode{Name: tail_name}
nodes[tail_name] = tail
}
edge := &BasicEdge{
Name: edgeName,
EdgeHead: head,
EdgeTail: tail,
}
head.AddEdge(edge)
}
return nodes
}

View File

@ -1,53 +0,0 @@
package digraph
import (
"fmt"
"testing"
)
func TestParseBasic(t *testing.T) {
spec := `a -> b ; first
b -> c ; second
b -> d ; third
z -> a`
nodes := ParseBasic(spec)
if len(nodes) != 5 {
t.Fatalf("bad: %v", nodes)
}
a := nodes["a"]
if a.Name != "a" {
t.Fatalf("bad: %v", a)
}
aEdges := a.Edges()
if len(aEdges) != 1 {
t.Fatalf("bad: %v", a.Edges())
}
if fmt.Sprintf("%v", aEdges[0]) != "first" {
t.Fatalf("bad: %v", aEdges[0])
}
b := nodes["b"]
if len(b.Edges()) != 2 {
t.Fatalf("bad: %v", b.Edges())
}
c := nodes["c"]
if len(c.Edges()) != 0 {
t.Fatalf("bad: %v", c.Edges())
}
d := nodes["d"]
if len(d.Edges()) != 0 {
t.Fatalf("bad: %v", d.Edges())
}
z := nodes["z"]
zEdges := z.Edges()
if len(zEdges) != 1 {
t.Fatalf("bad: %v", z.Edges())
}
if fmt.Sprintf("%v", zEdges[0]) != "Edge" {
t.Fatalf("bad: %v", zEdges[0])
}
}

View File

@ -1,34 +0,0 @@
package digraph
// Digraph is used to represent a Directed Graph. This means
// we have a set of nodes, and a set of edges which are directed
// from a source and towards a destination
type Digraph interface {
// Nodes provides all the nodes in the graph
Nodes() []Node
// Sources provides all the source nodes in the graph
Sources() []Node
// Sinks provides all the sink nodes in the graph
Sinks() []Node
// Transpose reverses the edge directions and returns
// a new Digraph
Transpose() Digraph
}
// Node represents a vertex in a Digraph
type Node interface {
// Edges returns the out edges for a given nod
Edges() []Edge
}
// Edge represents a directed edge in a Digraph
type Edge interface {
// Head returns the start point of the Edge
Head() Node
// Tail returns the end point of the Edge
Tail() Node
}

View File

@ -1,28 +0,0 @@
package digraph
import (
"fmt"
"io"
)
// WriteDot is used to emit a GraphViz compatible definition
// for a directed graph. It can be used to dump a .dot file.
func WriteDot(w io.Writer, nodes []Node) error {
w.Write([]byte("digraph {\n"))
defer w.Write([]byte("}\n"))
for _, n := range nodes {
nodeLine := fmt.Sprintf("\t\"%s\";\n", n)
w.Write([]byte(nodeLine))
for _, edge := range n.Edges() {
target := edge.Tail()
line := fmt.Sprintf("\t\"%s\" -> \"%s\" [label=\"%s\"];\n",
n, target, edge)
w.Write([]byte(line))
}
}
return nil
}

View File

@ -1,64 +0,0 @@
package digraph
import (
"bytes"
"strings"
"testing"
)
func TestWriteDot(t *testing.T) {
nodes := ParseBasic(`a -> b ; foo
a -> c
b -> d
b -> e
`)
var nlist []Node
for _, n := range nodes {
nlist = append(nlist, n)
}
buf := bytes.NewBuffer(nil)
if err := WriteDot(buf, nlist); err != nil {
t.Fatalf("err: %s", err)
}
actual := strings.TrimSpace(string(buf.Bytes()))
expected := strings.TrimSpace(writeDotStr)
actualLines := strings.Split(actual, "\n")
expectedLines := strings.Split(expected, "\n")
if actualLines[0] != expectedLines[0] ||
actualLines[len(actualLines)-1] != expectedLines[len(expectedLines)-1] ||
len(actualLines) != len(expectedLines) {
t.Fatalf("bad: %s", actual)
}
count := 0
for _, el := range expectedLines[1 : len(expectedLines)-1] {
for _, al := range actualLines[1 : len(actualLines)-1] {
if el == al {
count++
break
}
}
}
if count != len(expectedLines)-2 {
t.Fatalf("bad: %s", actual)
}
}
const writeDotStr = `
digraph {
"a";
"a" -> "b" [label="foo"];
"a" -> "c" [label="Edge"];
"b";
"b" -> "d" [label="Edge"];
"b" -> "e" [label="Edge"];
"c";
"d";
"e";
}
`

View File

@ -1,111 +0,0 @@
package digraph
// sccAcct is used ot pass around accounting information for
// the StronglyConnectedComponents algorithm
type sccAcct struct {
ExcludeSingle bool
NextIndex int
NodeIndex map[Node]int
Stack []Node
SCC [][]Node
}
// visit assigns an index and pushes a node onto the stack
func (s *sccAcct) visit(n Node) int {
idx := s.NextIndex
s.NodeIndex[n] = idx
s.NextIndex++
s.push(n)
return idx
}
// push adds a node to the stack
func (s *sccAcct) push(n Node) {
s.Stack = append(s.Stack, n)
}
// pop removes a node from the stack
func (s *sccAcct) pop() Node {
n := len(s.Stack)
if n == 0 {
return nil
}
node := s.Stack[n-1]
s.Stack = s.Stack[:n-1]
return node
}
// inStack checks if a node is in the stack
func (s *sccAcct) inStack(needle Node) bool {
for _, n := range s.Stack {
if n == needle {
return true
}
}
return false
}
// StronglyConnectedComponents implements Tarjan's algorithm to
// find all the strongly connected components in a graph. This can
// be used to detected any cycles in a graph, as well as which nodes
// partipate in those cycles. excludeSingle is used to exclude strongly
// connected components of size one.
func StronglyConnectedComponents(nodes []Node, excludeSingle bool) [][]Node {
acct := sccAcct{
ExcludeSingle: excludeSingle,
NextIndex: 1,
NodeIndex: make(map[Node]int, len(nodes)),
}
for _, node := range nodes {
// Recurse on any non-visited nodes
if acct.NodeIndex[node] == 0 {
stronglyConnected(&acct, node)
}
}
return acct.SCC
}
func stronglyConnected(acct *sccAcct, node Node) int {
// Initial node visit
index := acct.visit(node)
minIdx := index
for _, edge := range node.Edges() {
target := edge.Tail()
targetIdx := acct.NodeIndex[target]
// Recurse on successor if not yet visited
if targetIdx == 0 {
minIdx = min(minIdx, stronglyConnected(acct, target))
} else if acct.inStack(target) {
// Check if the node is in the stack
minIdx = min(minIdx, targetIdx)
}
}
// Pop the strongly connected components off the stack if
// this is a root node
if index == minIdx {
var scc []Node
for {
n := acct.pop()
scc = append(scc, n)
if n == node {
break
}
}
if !(acct.ExcludeSingle && len(scc) == 1) {
acct.SCC = append(acct.SCC, scc)
}
}
return minIdx
}
func min(a, b int) int {
if a <= b {
return a
}
return b
}

View File

@ -1,82 +0,0 @@
package digraph
import (
"reflect"
"sort"
"testing"
)
func TestStronglyConnectedComponents(t *testing.T) {
nodes := ParseBasic(`a -> b
a -> c
b -> c
c -> b
c -> d
d -> e`)
var nlist []Node
for _, n := range nodes {
nlist = append(nlist, n)
}
sccs := StronglyConnectedComponents(nlist, false)
if len(sccs) != 4 {
t.Fatalf("bad: %v", sccs)
}
sccs = StronglyConnectedComponents(nlist, true)
if len(sccs) != 1 {
t.Fatalf("bad: %v", sccs)
}
cycle := sccs[0]
if len(cycle) != 2 {
t.Fatalf("bad: %v", sccs)
}
cycleNodes := make([]string, len(cycle))
for i, c := range cycle {
cycleNodes[i] = c.(*BasicNode).Name
}
sort.Strings(cycleNodes)
expected := []string{"b", "c"}
if !reflect.DeepEqual(cycleNodes, expected) {
t.Fatalf("bad: %#v", cycleNodes)
}
}
func TestStronglyConnectedComponents2(t *testing.T) {
nodes := ParseBasic(`a -> b
a -> c
b -> d
b -> e
c -> f
c -> g
g -> a
`)
var nlist []Node
for _, n := range nodes {
nlist = append(nlist, n)
}
sccs := StronglyConnectedComponents(nlist, true)
if len(sccs) != 1 {
t.Fatalf("bad: %v", sccs)
}
cycle := sccs[0]
if len(cycle) != 3 {
t.Fatalf("bad: %v", sccs)
}
cycleNodes := make([]string, len(cycle))
for i, c := range cycle {
cycleNodes[i] = c.(*BasicNode).Name
}
sort.Strings(cycleNodes)
expected := []string{"a", "c", "g"}
if !reflect.DeepEqual(cycleNodes, expected) {
t.Fatalf("bad: %#v", cycleNodes)
}
}

View File

@ -1,113 +0,0 @@
package digraph
// DepthFirstWalk performs a depth-first traversal of the nodes
// that can be reached from the initial input set. The callback is
// invoked for each visited node, and may return false to prevent
// vising any children of the current node
func DepthFirstWalk(node Node, cb func(n Node) bool) {
frontier := []Node{node}
seen := make(map[Node]struct{})
for len(frontier) > 0 {
// Pop the current node
n := len(frontier)
current := frontier[n-1]
frontier = frontier[:n-1]
// Check for potential cycle
if _, ok := seen[current]; ok {
continue
}
seen[current] = struct{}{}
// Visit with the callback
if !cb(current) {
continue
}
// Add any new edges to visit, in reverse order
edges := current.Edges()
for i := len(edges) - 1; i >= 0; i-- {
frontier = append(frontier, edges[i].Tail())
}
}
}
// FilterDegree returns only the nodes with the desired
// degree. This can be used with OutDegree or InDegree
func FilterDegree(degree int, degrees map[Node]int) []Node {
var matching []Node
for n, d := range degrees {
if d == degree {
matching = append(matching, n)
}
}
return matching
}
// InDegree is used to compute the in-degree of nodes
func InDegree(nodes []Node) map[Node]int {
degree := make(map[Node]int, len(nodes))
for _, n := range nodes {
if _, ok := degree[n]; !ok {
degree[n] = 0
}
for _, e := range n.Edges() {
degree[e.Tail()]++
}
}
return degree
}
// OutDegree is used to compute the in-degree of nodes
func OutDegree(nodes []Node) map[Node]int {
degree := make(map[Node]int, len(nodes))
for _, n := range nodes {
degree[n] = len(n.Edges())
}
return degree
}
// Sinks is used to get the nodes with out-degree of 0
func Sinks(nodes []Node) []Node {
return FilterDegree(0, OutDegree(nodes))
}
// Sources is used to get the nodes with in-degree of 0
func Sources(nodes []Node) []Node {
return FilterDegree(0, InDegree(nodes))
}
// Unreachable starts at a given start node, performs
// a DFS from there, and returns the set of unreachable nodes.
func Unreachable(start Node, nodes []Node) []Node {
// DFS from the start ndoe
frontier := []Node{start}
seen := make(map[Node]struct{})
for len(frontier) > 0 {
// Pop the current node
n := len(frontier)
current := frontier[n-1]
frontier = frontier[:n-1]
// Check for potential cycle
if _, ok := seen[current]; ok {
continue
}
seen[current] = struct{}{}
// Add any new edges to visit, in reverse order
edges := current.Edges()
for i := len(edges) - 1; i >= 0; i-- {
frontier = append(frontier, edges[i].Tail())
}
}
// Check for any unseen nodes
var unseen []Node
for _, node := range nodes {
if _, ok := seen[node]; !ok {
unseen = append(unseen, node)
}
}
return unseen
}

View File

@ -1,233 +0,0 @@
package digraph
import (
"reflect"
"testing"
)
func TestDepthFirstWalk(t *testing.T) {
nodes := ParseBasic(`a -> b
a -> c
a -> d
b -> e
d -> f
e -> a ; cycle`)
root := nodes["a"]
expected := []string{
"a",
"b",
"e",
"c",
"d",
"f",
}
index := 0
DepthFirstWalk(root, func(n Node) bool {
name := n.(*BasicNode).Name
if expected[index] != name {
t.Fatalf("expected: %v, got %v", expected[index], name)
}
index++
return true
})
}
func TestInDegree(t *testing.T) {
nodes := ParseBasic(`a -> b
a -> c
a -> d
b -> e
c -> e
d -> f`)
var nlist []Node
for _, n := range nodes {
nlist = append(nlist, n)
}
expected := map[string]int{
"a": 0,
"b": 1,
"c": 1,
"d": 1,
"e": 2,
"f": 1,
}
indegree := InDegree(nlist)
for n, d := range indegree {
name := n.(*BasicNode).Name
exp := expected[name]
if exp != d {
t.Fatalf("Expected %d for %s, got %d",
exp, name, d)
}
}
}
func TestOutDegree(t *testing.T) {
nodes := ParseBasic(`a -> b
a -> c
a -> d
b -> e
c -> e
d -> f`)
var nlist []Node
for _, n := range nodes {
nlist = append(nlist, n)
}
expected := map[string]int{
"a": 3,
"b": 1,
"c": 1,
"d": 1,
"e": 0,
"f": 0,
}
outDegree := OutDegree(nlist)
for n, d := range outDegree {
name := n.(*BasicNode).Name
exp := expected[name]
if exp != d {
t.Fatalf("Expected %d for %s, got %d",
exp, name, d)
}
}
}
func TestSinks(t *testing.T) {
nodes := ParseBasic(`a -> b
a -> c
a -> d
b -> e
c -> e
d -> f`)
var nlist []Node
for _, n := range nodes {
nlist = append(nlist, n)
}
sinks := Sinks(nlist)
var haveE, haveF bool
for _, n := range sinks {
name := n.(*BasicNode).Name
switch name {
case "e":
haveE = true
case "f":
haveF = true
}
}
if !haveE || !haveF {
t.Fatalf("missing sink")
}
}
func TestSources(t *testing.T) {
nodes := ParseBasic(`a -> b
a -> c
a -> d
b -> e
c -> e
d -> f
x -> y`)
var nlist []Node
for _, n := range nodes {
nlist = append(nlist, n)
}
sources := Sources(nlist)
if len(sources) != 2 {
t.Fatalf("bad: %v", sources)
}
var haveA, haveX bool
for _, n := range sources {
name := n.(*BasicNode).Name
switch name {
case "a":
haveA = true
case "x":
haveX = true
}
}
if !haveA || !haveX {
t.Fatalf("missing source %v %v", haveA, haveX)
}
}
func TestUnreachable(t *testing.T) {
nodes := ParseBasic(`a -> b
a -> c
a -> d
b -> e
c -> e
d -> f
f -> a
x -> y
y -> z`)
var nlist []Node
for _, n := range nodes {
nlist = append(nlist, n)
}
unreached := Unreachable(nodes["a"], nlist)
if len(unreached) != 3 {
t.Fatalf("bad: %v", unreached)
}
var haveX, haveY, haveZ bool
for _, n := range unreached {
name := n.(*BasicNode).Name
switch name {
case "x":
haveX = true
case "y":
haveY = true
case "z":
haveZ = true
}
}
if !haveX || !haveY || !haveZ {
t.Fatalf("missing %v %v %v", haveX, haveY, haveZ)
}
}
func TestUnreachable2(t *testing.T) {
nodes := ParseBasic(`a -> b
a -> c
a -> d
b -> e
c -> e
d -> f
f -> a
x -> y
y -> z`)
var nlist []Node
for _, n := range nodes {
nlist = append(nlist, n)
}
unreached := Unreachable(nodes["x"], nlist)
if len(unreached) != 6 {
t.Fatalf("bad: %v", unreached)
}
expected := map[string]struct{}{
"a": struct{}{},
"b": struct{}{},
"c": struct{}{},
"d": struct{}{},
"e": struct{}{},
"f": struct{}{},
}
out := map[string]struct{}{}
for _, n := range unreached {
name := n.(*BasicNode).Name
out[name] = struct{}{}
}
if !reflect.DeepEqual(out, expected) {
t.Fatalf("bad: %v %v", out, expected)
}
}