diff --git a/vendor/github.com/golang/mock/LICENSE b/vendor/github.com/golang/mock/LICENSE new file mode 100644 index 000000000..d64569567 --- /dev/null +++ b/vendor/github.com/golang/mock/LICENSE @@ -0,0 +1,202 @@ + + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/vendor/github.com/golang/mock/gomock/call.go b/vendor/github.com/golang/mock/gomock/call.go new file mode 100644 index 000000000..a3fa1ae41 --- /dev/null +++ b/vendor/github.com/golang/mock/gomock/call.go @@ -0,0 +1,428 @@ +// Copyright 2010 Google Inc. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +package gomock + +import ( + "fmt" + "reflect" + "strconv" + "strings" +) + +// Call represents an expected call to a mock. +type Call struct { + t TestReporter // for triggering test failures on invalid call setup + + receiver interface{} // the receiver of the method call + method string // the name of the method + methodType reflect.Type // the type of the method + args []Matcher // the args + origin string // file and line number of call setup + + preReqs []*Call // prerequisite calls + + // Expectations + minCalls, maxCalls int + + numCalls int // actual number made + + // actions are called when this Call is called. Each action gets the args and + // can set the return values by returning a non-nil slice. Actions run in the + // order they are created. + actions []func([]interface{}) []interface{} +} + +// newCall creates a *Call. It requires the method type in order to support +// unexported methods. +func newCall(t TestReporter, receiver interface{}, method string, methodType reflect.Type, args ...interface{}) *Call { + if h, ok := t.(testHelper); ok { + h.Helper() + } + + // TODO: check arity, types. + margs := make([]Matcher, len(args)) + for i, arg := range args { + if m, ok := arg.(Matcher); ok { + margs[i] = m + } else if arg == nil { + // Handle nil specially so that passing a nil interface value + // will match the typed nils of concrete args. + margs[i] = Nil() + } else { + margs[i] = Eq(arg) + } + } + + origin := callerInfo(3) + actions := []func([]interface{}) []interface{}{func([]interface{}) []interface{} { + // Synthesize the zero value for each of the return args' types. + rets := make([]interface{}, methodType.NumOut()) + for i := 0; i < methodType.NumOut(); i++ { + rets[i] = reflect.Zero(methodType.Out(i)).Interface() + } + return rets + }} + return &Call{t: t, receiver: receiver, method: method, methodType: methodType, + args: margs, origin: origin, minCalls: 1, maxCalls: 1, actions: actions} +} + +// AnyTimes allows the expectation to be called 0 or more times +func (c *Call) AnyTimes() *Call { + c.minCalls, c.maxCalls = 0, 1e8 // close enough to infinity + return c +} + +// MinTimes requires the call to occur at least n times. If AnyTimes or MaxTimes have not been called, MinTimes also +// sets the maximum number of calls to infinity. +func (c *Call) MinTimes(n int) *Call { + c.minCalls = n + if c.maxCalls == 1 { + c.maxCalls = 1e8 + } + return c +} + +// MaxTimes limits the number of calls to n times. If AnyTimes or MinTimes have not been called, MaxTimes also +// sets the minimum number of calls to 0. +func (c *Call) MaxTimes(n int) *Call { + c.maxCalls = n + if c.minCalls == 1 { + c.minCalls = 0 + } + return c +} + +// DoAndReturn declares the action to run when the call is matched. +// The return values from this function are returned by the mocked function. +// It takes an interface{} argument to support n-arity functions. +func (c *Call) DoAndReturn(f interface{}) *Call { + // TODO: Check arity and types here, rather than dying badly elsewhere. + v := reflect.ValueOf(f) + + c.addAction(func(args []interface{}) []interface{} { + vargs := make([]reflect.Value, len(args)) + ft := v.Type() + for i := 0; i < len(args); i++ { + if args[i] != nil { + vargs[i] = reflect.ValueOf(args[i]) + } else { + // Use the zero value for the arg. + vargs[i] = reflect.Zero(ft.In(i)) + } + } + vrets := v.Call(vargs) + rets := make([]interface{}, len(vrets)) + for i, ret := range vrets { + rets[i] = ret.Interface() + } + return rets + }) + return c +} + +// Do declares the action to run when the call is matched. The function's +// return values are ignored to retain backward compatibility. To use the +// return values call DoAndReturn. +// It takes an interface{} argument to support n-arity functions. +func (c *Call) Do(f interface{}) *Call { + // TODO: Check arity and types here, rather than dying badly elsewhere. + v := reflect.ValueOf(f) + + c.addAction(func(args []interface{}) []interface{} { + vargs := make([]reflect.Value, len(args)) + ft := v.Type() + for i := 0; i < len(args); i++ { + if args[i] != nil { + vargs[i] = reflect.ValueOf(args[i]) + } else { + // Use the zero value for the arg. + vargs[i] = reflect.Zero(ft.In(i)) + } + } + v.Call(vargs) + return nil + }) + return c +} + +// Return declares the values to be returned by the mocked function call. +func (c *Call) Return(rets ...interface{}) *Call { + if h, ok := c.t.(testHelper); ok { + h.Helper() + } + + mt := c.methodType + if len(rets) != mt.NumOut() { + c.t.Fatalf("wrong number of arguments to Return for %T.%v: got %d, want %d [%s]", + c.receiver, c.method, len(rets), mt.NumOut(), c.origin) + } + for i, ret := range rets { + if got, want := reflect.TypeOf(ret), mt.Out(i); got == want { + // Identical types; nothing to do. + } else if got == nil { + // Nil needs special handling. + switch want.Kind() { + case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice: + // ok + default: + c.t.Fatalf("argument %d to Return for %T.%v is nil, but %v is not nillable [%s]", + i, c.receiver, c.method, want, c.origin) + } + } else if got.AssignableTo(want) { + // Assignable type relation. Make the assignment now so that the generated code + // can return the values with a type assertion. + v := reflect.New(want).Elem() + v.Set(reflect.ValueOf(ret)) + rets[i] = v.Interface() + } else { + c.t.Fatalf("wrong type of argument %d to Return for %T.%v: %v is not assignable to %v [%s]", + i, c.receiver, c.method, got, want, c.origin) + } + } + + c.addAction(func([]interface{}) []interface{} { + return rets + }) + + return c +} + +// Times declares the exact number of times a function call is expected to be executed. +func (c *Call) Times(n int) *Call { + c.minCalls, c.maxCalls = n, n + return c +} + +// SetArg declares an action that will set the nth argument's value, +// indirected through a pointer. Or, in the case of a slice, SetArg +// will copy value's elements into the nth argument. +func (c *Call) SetArg(n int, value interface{}) *Call { + if h, ok := c.t.(testHelper); ok { + h.Helper() + } + + mt := c.methodType + // TODO: This will break on variadic methods. + // We will need to check those at invocation time. + if n < 0 || n >= mt.NumIn() { + c.t.Fatalf("SetArg(%d, ...) called for a method with %d args [%s]", + n, mt.NumIn(), c.origin) + } + // Permit setting argument through an interface. + // In the interface case, we don't (nay, can't) check the type here. + at := mt.In(n) + switch at.Kind() { + case reflect.Ptr: + dt := at.Elem() + if vt := reflect.TypeOf(value); !vt.AssignableTo(dt) { + c.t.Fatalf("SetArg(%d, ...) argument is a %v, not assignable to %v [%s]", + n, vt, dt, c.origin) + } + case reflect.Interface: + // nothing to do + case reflect.Slice: + // nothing to do + default: + c.t.Fatalf("SetArg(%d, ...) referring to argument of non-pointer non-interface non-slice type %v [%s]", + n, at, c.origin) + } + + c.addAction(func(args []interface{}) []interface{} { + v := reflect.ValueOf(value) + switch reflect.TypeOf(args[n]).Kind() { + case reflect.Slice: + setSlice(args[n], v) + default: + reflect.ValueOf(args[n]).Elem().Set(v) + } + return nil + }) + return c +} + +// isPreReq returns true if other is a direct or indirect prerequisite to c. +func (c *Call) isPreReq(other *Call) bool { + for _, preReq := range c.preReqs { + if other == preReq || preReq.isPreReq(other) { + return true + } + } + return false +} + +// After declares that the call may only match after preReq has been exhausted. +func (c *Call) After(preReq *Call) *Call { + if h, ok := c.t.(testHelper); ok { + h.Helper() + } + + if c == preReq { + c.t.Fatalf("A call isn't allowed to be its own prerequisite") + } + if preReq.isPreReq(c) { + c.t.Fatalf("Loop in call order: %v is a prerequisite to %v (possibly indirectly).", c, preReq) + } + + c.preReqs = append(c.preReqs, preReq) + return c +} + +// Returns true if the minimum number of calls have been made. +func (c *Call) satisfied() bool { + return c.numCalls >= c.minCalls +} + +// Returns true iff the maximum number of calls have been made. +func (c *Call) exhausted() bool { + return c.numCalls >= c.maxCalls +} + +func (c *Call) String() string { + args := make([]string, len(c.args)) + for i, arg := range c.args { + args[i] = arg.String() + } + arguments := strings.Join(args, ", ") + return fmt.Sprintf("%T.%v(%s) %s", c.receiver, c.method, arguments, c.origin) +} + +// Tests if the given call matches the expected call. +// If yes, returns nil. If no, returns error with message explaining why it does not match. +func (c *Call) matches(args []interface{}) error { + if !c.methodType.IsVariadic() { + if len(args) != len(c.args) { + return fmt.Errorf("Expected call at %s has the wrong number of arguments. Got: %d, want: %d", + c.origin, len(args), len(c.args)) + } + + for i, m := range c.args { + if !m.Matches(args[i]) { + return fmt.Errorf("Expected call at %s doesn't match the argument at index %s.\nGot: %v\nWant: %v", + c.origin, strconv.Itoa(i), args[i], m) + } + } + } else { + if len(c.args) < c.methodType.NumIn()-1 { + return fmt.Errorf("Expected call at %s has the wrong number of matchers. Got: %d, want: %d", + c.origin, len(c.args), c.methodType.NumIn()-1) + } + if len(c.args) != c.methodType.NumIn() && len(args) != len(c.args) { + return fmt.Errorf("Expected call at %s has the wrong number of arguments. Got: %d, want: %d", + c.origin, len(args), len(c.args)) + } + if len(args) < len(c.args)-1 { + return fmt.Errorf("Expected call at %s has the wrong number of arguments. Got: %d, want: greater than or equal to %d", + c.origin, len(args), len(c.args)-1) + } + + for i, m := range c.args { + if i < c.methodType.NumIn()-1 { + // Non-variadic args + if !m.Matches(args[i]) { + return fmt.Errorf("Expected call at %s doesn't match the argument at index %s.\nGot: %v\nWant: %v", + c.origin, strconv.Itoa(i), args[i], m) + } + continue + } + // The last arg has a possibility of a variadic argument, so let it branch + + // sample: Foo(a int, b int, c ...int) + if i < len(c.args) && i < len(args) { + if m.Matches(args[i]) { + // Got Foo(a, b, c) want Foo(matcherA, matcherB, gomock.Any()) + // Got Foo(a, b, c) want Foo(matcherA, matcherB, someSliceMatcher) + // Got Foo(a, b, c) want Foo(matcherA, matcherB, matcherC) + // Got Foo(a, b) want Foo(matcherA, matcherB) + // Got Foo(a, b, c, d) want Foo(matcherA, matcherB, matcherC, matcherD) + continue + } + } + + // The number of actual args don't match the number of matchers, + // or the last matcher is a slice and the last arg is not. + // If this function still matches it is because the last matcher + // matches all the remaining arguments or the lack of any. + // Convert the remaining arguments, if any, into a slice of the + // expected type. + vargsType := c.methodType.In(c.methodType.NumIn() - 1) + vargs := reflect.MakeSlice(vargsType, 0, len(args)-i) + for _, arg := range args[i:] { + vargs = reflect.Append(vargs, reflect.ValueOf(arg)) + } + if m.Matches(vargs.Interface()) { + // Got Foo(a, b, c, d, e) want Foo(matcherA, matcherB, gomock.Any()) + // Got Foo(a, b, c, d, e) want Foo(matcherA, matcherB, someSliceMatcher) + // Got Foo(a, b) want Foo(matcherA, matcherB, gomock.Any()) + // Got Foo(a, b) want Foo(matcherA, matcherB, someEmptySliceMatcher) + break + } + // Wrong number of matchers or not match. Fail. + // Got Foo(a, b) want Foo(matcherA, matcherB, matcherC, matcherD) + // Got Foo(a, b, c) want Foo(matcherA, matcherB, matcherC, matcherD) + // Got Foo(a, b, c, d) want Foo(matcherA, matcherB, matcherC, matcherD, matcherE) + // Got Foo(a, b, c, d, e) want Foo(matcherA, matcherB, matcherC, matcherD) + // Got Foo(a, b, c) want Foo(matcherA, matcherB) + return fmt.Errorf("Expected call at %s doesn't match the argument at index %s.\nGot: %v\nWant: %v", + c.origin, strconv.Itoa(i), args[i:], c.args[i]) + + } + } + + // Check that all prerequisite calls have been satisfied. + for _, preReqCall := range c.preReqs { + if !preReqCall.satisfied() { + return fmt.Errorf("Expected call at %s doesn't have a prerequisite call satisfied:\n%v\nshould be called before:\n%v", + c.origin, preReqCall, c) + } + } + + // Check that the call is not exhausted. + if c.exhausted() { + return fmt.Errorf("Expected call at %s has already been called the max number of times.", c.origin) + } + + return nil +} + +// dropPrereqs tells the expected Call to not re-check prerequisite calls any +// longer, and to return its current set. +func (c *Call) dropPrereqs() (preReqs []*Call) { + preReqs = c.preReqs + c.preReqs = nil + return +} + +func (c *Call) call(args []interface{}) []func([]interface{}) []interface{} { + c.numCalls++ + return c.actions +} + +// InOrder declares that the given calls should occur in order. +func InOrder(calls ...*Call) { + for i := 1; i < len(calls); i++ { + calls[i].After(calls[i-1]) + } +} + +func setSlice(arg interface{}, v reflect.Value) { + va := reflect.ValueOf(arg) + for i := 0; i < v.Len(); i++ { + va.Index(i).Set(v.Index(i)) + } +} + +func (c *Call) addAction(action func([]interface{}) []interface{}) { + c.actions = append(c.actions, action) +} diff --git a/vendor/github.com/golang/mock/gomock/callset.go b/vendor/github.com/golang/mock/gomock/callset.go new file mode 100644 index 000000000..c44a8a585 --- /dev/null +++ b/vendor/github.com/golang/mock/gomock/callset.go @@ -0,0 +1,108 @@ +// Copyright 2011 Google Inc. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +package gomock + +import ( + "bytes" + "fmt" +) + +// callSet represents a set of expected calls, indexed by receiver and method +// name. +type callSet struct { + // Calls that are still expected. + expected map[callSetKey][]*Call + // Calls that have been exhausted. + exhausted map[callSetKey][]*Call +} + +// callSetKey is the key in the maps in callSet +type callSetKey struct { + receiver interface{} + fname string +} + +func newCallSet() *callSet { + return &callSet{make(map[callSetKey][]*Call), make(map[callSetKey][]*Call)} +} + +// Add adds a new expected call. +func (cs callSet) Add(call *Call) { + key := callSetKey{call.receiver, call.method} + m := cs.expected + if call.exhausted() { + m = cs.exhausted + } + m[key] = append(m[key], call) +} + +// Remove removes an expected call. +func (cs callSet) Remove(call *Call) { + key := callSetKey{call.receiver, call.method} + calls := cs.expected[key] + for i, c := range calls { + if c == call { + // maintain order for remaining calls + cs.expected[key] = append(calls[:i], calls[i+1:]...) + cs.exhausted[key] = append(cs.exhausted[key], call) + break + } + } +} + +// FindMatch searches for a matching call. Returns error with explanation message if no call matched. +func (cs callSet) FindMatch(receiver interface{}, method string, args []interface{}) (*Call, error) { + key := callSetKey{receiver, method} + + // Search through the expected calls. + expected := cs.expected[key] + var callsErrors bytes.Buffer + for _, call := range expected { + err := call.matches(args) + if err != nil { + fmt.Fprintf(&callsErrors, "\n%v", err) + } else { + return call, nil + } + } + + // If we haven't found a match then search through the exhausted calls so we + // get useful error messages. + exhausted := cs.exhausted[key] + for _, call := range exhausted { + if err := call.matches(args); err != nil { + fmt.Fprintf(&callsErrors, "\n%v", err) + } + } + + if len(expected)+len(exhausted) == 0 { + fmt.Fprintf(&callsErrors, "there are no expected calls of the method %q for that receiver", method) + } + + return nil, fmt.Errorf(callsErrors.String()) +} + +// Failures returns the calls that are not satisfied. +func (cs callSet) Failures() []*Call { + failures := make([]*Call, 0, len(cs.expected)) + for _, calls := range cs.expected { + for _, call := range calls { + if !call.satisfied() { + failures = append(failures, call) + } + } + } + return failures +} diff --git a/vendor/github.com/golang/mock/gomock/controller.go b/vendor/github.com/golang/mock/gomock/controller.go new file mode 100644 index 000000000..a7b79188b --- /dev/null +++ b/vendor/github.com/golang/mock/gomock/controller.go @@ -0,0 +1,217 @@ +// Copyright 2010 Google Inc. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// GoMock - a mock framework for Go. +// +// Standard usage: +// (1) Define an interface that you wish to mock. +// type MyInterface interface { +// SomeMethod(x int64, y string) +// } +// (2) Use mockgen to generate a mock from the interface. +// (3) Use the mock in a test: +// func TestMyThing(t *testing.T) { +// mockCtrl := gomock.NewController(t) +// defer mockCtrl.Finish() +// +// mockObj := something.NewMockMyInterface(mockCtrl) +// mockObj.EXPECT().SomeMethod(4, "blah") +// // pass mockObj to a real object and play with it. +// } +// +// By default, expected calls are not enforced to run in any particular order. +// Call order dependency can be enforced by use of InOrder and/or Call.After. +// Call.After can create more varied call order dependencies, but InOrder is +// often more convenient. +// +// The following examples create equivalent call order dependencies. +// +// Example of using Call.After to chain expected call order: +// +// firstCall := mockObj.EXPECT().SomeMethod(1, "first") +// secondCall := mockObj.EXPECT().SomeMethod(2, "second").After(firstCall) +// mockObj.EXPECT().SomeMethod(3, "third").After(secondCall) +// +// Example of using InOrder to declare expected call order: +// +// gomock.InOrder( +// mockObj.EXPECT().SomeMethod(1, "first"), +// mockObj.EXPECT().SomeMethod(2, "second"), +// mockObj.EXPECT().SomeMethod(3, "third"), +// ) +// +// TODO: +// - Handle different argument/return types (e.g. ..., chan, map, interface). +package gomock + +import ( + "fmt" + "golang.org/x/net/context" + "reflect" + "runtime" + "sync" +) + +// A TestReporter is something that can be used to report test failures. +// It is satisfied by the standard library's *testing.T. +type TestReporter interface { + Errorf(format string, args ...interface{}) + Fatalf(format string, args ...interface{}) +} + +// A Controller represents the top-level control of a mock ecosystem. +// It defines the scope and lifetime of mock objects, as well as their expectations. +// It is safe to call Controller's methods from multiple goroutines. +type Controller struct { + mu sync.Mutex + t TestReporter + expectedCalls *callSet + finished bool +} + +func NewController(t TestReporter) *Controller { + return &Controller{ + t: t, + expectedCalls: newCallSet(), + } +} + +type cancelReporter struct { + t TestReporter + cancel func() +} + +func (r *cancelReporter) Errorf(format string, args ...interface{}) { r.t.Errorf(format, args...) } +func (r *cancelReporter) Fatalf(format string, args ...interface{}) { + defer r.cancel() + r.t.Fatalf(format, args...) +} + +// WithContext returns a new Controller and a Context, which is cancelled on any +// fatal failure. +func WithContext(ctx context.Context, t TestReporter) (*Controller, context.Context) { + ctx, cancel := context.WithCancel(ctx) + return NewController(&cancelReporter{t, cancel}), ctx +} + +func (ctrl *Controller) RecordCall(receiver interface{}, method string, args ...interface{}) *Call { + if h, ok := ctrl.t.(testHelper); ok { + h.Helper() + } + + recv := reflect.ValueOf(receiver) + for i := 0; i < recv.Type().NumMethod(); i++ { + if recv.Type().Method(i).Name == method { + return ctrl.RecordCallWithMethodType(receiver, method, recv.Method(i).Type(), args...) + } + } + ctrl.t.Fatalf("gomock: failed finding method %s on %T", method, receiver) + panic("unreachable") +} + +func (ctrl *Controller) RecordCallWithMethodType(receiver interface{}, method string, methodType reflect.Type, args ...interface{}) *Call { + if h, ok := ctrl.t.(testHelper); ok { + h.Helper() + } + + call := newCall(ctrl.t, receiver, method, methodType, args...) + + ctrl.mu.Lock() + defer ctrl.mu.Unlock() + ctrl.expectedCalls.Add(call) + + return call +} + +func (ctrl *Controller) Call(receiver interface{}, method string, args ...interface{}) []interface{} { + if h, ok := ctrl.t.(testHelper); ok { + h.Helper() + } + + // Nest this code so we can use defer to make sure the lock is released. + actions := func() []func([]interface{}) []interface{} { + ctrl.mu.Lock() + defer ctrl.mu.Unlock() + + expected, err := ctrl.expectedCalls.FindMatch(receiver, method, args) + if err != nil { + origin := callerInfo(2) + ctrl.t.Fatalf("Unexpected call to %T.%v(%v) at %s because: %s", receiver, method, args, origin, err) + } + + // Two things happen here: + // * the matching call no longer needs to check prerequite calls, + // * and the prerequite calls are no longer expected, so remove them. + preReqCalls := expected.dropPrereqs() + for _, preReqCall := range preReqCalls { + ctrl.expectedCalls.Remove(preReqCall) + } + + actions := expected.call(args) + if expected.exhausted() { + ctrl.expectedCalls.Remove(expected) + } + return actions + }() + + var rets []interface{} + for _, action := range actions { + if r := action(args); r != nil { + rets = r + } + } + + return rets +} + +func (ctrl *Controller) Finish() { + if h, ok := ctrl.t.(testHelper); ok { + h.Helper() + } + + ctrl.mu.Lock() + defer ctrl.mu.Unlock() + + if ctrl.finished { + ctrl.t.Fatalf("Controller.Finish was called more than once. It has to be called exactly once.") + } + ctrl.finished = true + + // If we're currently panicking, probably because this is a deferred call, + // pass through the panic. + if err := recover(); err != nil { + panic(err) + } + + // Check that all remaining expected calls are satisfied. + failures := ctrl.expectedCalls.Failures() + for _, call := range failures { + ctrl.t.Errorf("missing call(s) to %v", call) + } + if len(failures) != 0 { + ctrl.t.Fatalf("aborting test due to missing call(s)") + } +} + +func callerInfo(skip int) string { + if _, file, line, ok := runtime.Caller(skip + 1); ok { + return fmt.Sprintf("%s:%d", file, line) + } + return "unknown file" +} + +type testHelper interface { + TestReporter + Helper() +} diff --git a/vendor/github.com/golang/mock/gomock/matchers.go b/vendor/github.com/golang/mock/gomock/matchers.go new file mode 100644 index 000000000..65ad8bab7 --- /dev/null +++ b/vendor/github.com/golang/mock/gomock/matchers.go @@ -0,0 +1,124 @@ +//go:generate mockgen -destination mock_matcher/mock_matcher.go github.com/golang/mock/gomock Matcher + +// Copyright 2010 Google Inc. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +package gomock + +import ( + "fmt" + "reflect" +) + +// A Matcher is a representation of a class of values. +// It is used to represent the valid or expected arguments to a mocked method. +type Matcher interface { + // Matches returns whether x is a match. + Matches(x interface{}) bool + + // String describes what the matcher matches. + String() string +} + +type anyMatcher struct{} + +func (anyMatcher) Matches(x interface{}) bool { + return true +} + +func (anyMatcher) String() string { + return "is anything" +} + +type eqMatcher struct { + x interface{} +} + +func (e eqMatcher) Matches(x interface{}) bool { + return reflect.DeepEqual(e.x, x) +} + +func (e eqMatcher) String() string { + return fmt.Sprintf("is equal to %v", e.x) +} + +type nilMatcher struct{} + +func (nilMatcher) Matches(x interface{}) bool { + if x == nil { + return true + } + + v := reflect.ValueOf(x) + switch v.Kind() { + case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, + reflect.Ptr, reflect.Slice: + return v.IsNil() + } + + return false +} + +func (nilMatcher) String() string { + return "is nil" +} + +type notMatcher struct { + m Matcher +} + +func (n notMatcher) Matches(x interface{}) bool { + return !n.m.Matches(x) +} + +func (n notMatcher) String() string { + // TODO: Improve this if we add a NotString method to the Matcher interface. + return "not(" + n.m.String() + ")" +} + +type assignableToTypeOfMatcher struct { + targetType reflect.Type +} + +func (m assignableToTypeOfMatcher) Matches(x interface{}) bool { + return reflect.TypeOf(x).AssignableTo(m.targetType) +} + +func (m assignableToTypeOfMatcher) String() string { + return "is assignable to " + m.targetType.Name() +} + +// Constructors +func Any() Matcher { return anyMatcher{} } +func Eq(x interface{}) Matcher { return eqMatcher{x} } +func Nil() Matcher { return nilMatcher{} } +func Not(x interface{}) Matcher { + if m, ok := x.(Matcher); ok { + return notMatcher{m} + } + return notMatcher{Eq(x)} +} + +// AssignableToTypeOf is a Matcher that matches if the parameter to the mock +// function is assignable to the type of the parameter to this function. +// +// Example usage: +// +// dbMock.EXPECT(). +// Insert(gomock.AssignableToTypeOf(&EmployeeRecord{})). +// Return(errors.New("DB error")) +// +func AssignableToTypeOf(x interface{}) Matcher { + return assignableToTypeOfMatcher{reflect.TypeOf(x)} +} diff --git a/vendor/vendor.json b/vendor/vendor.json index f360d3064..432dbdd6f 100644 --- a/vendor/vendor.json +++ b/vendor/vendor.json @@ -1326,6 +1326,12 @@ "revision": "6592d9cc0a499ad2d5f574fde80a2b5c5cc3b4f5", "revisionTime": "2018-01-28T22:55:04Z" }, + { + "checksumSHA1": "kpDdn8FTTpe3DOSH7qDyfvIIzrY=", + "path": "github.com/golang/mock/gomock", + "revision": "22bbf0ddf08105dfa364d0a2fa619dfa71014af5", + "revisionTime": "2018-05-03T01:48:54Z" + }, { "checksumSHA1": "JZV+pLo8Z/kIYExrZr1Zu9KSKyU=", "path": "github.com/golang/protobuf/proto",