vendor: github.com/google/go-cmp@v0.3.0

This commit is contained in:
Radek Simko 2019-05-27 20:35:42 -05:00
parent f3fb3f8ccf
commit 02437f067e
No known key found for this signature in database
GPG Key ID: 1F1C84FE689A88D7
32 changed files with 2446 additions and 982 deletions

2
go.mod
View File

@ -33,7 +33,7 @@ require (
github.com/golang/mock v1.3.1 github.com/golang/mock v1.3.1
github.com/golang/protobuf v1.3.0 github.com/golang/protobuf v1.3.0
github.com/golang/snappy v0.0.0-20180518054509-2e65f85255db // indirect github.com/golang/snappy v0.0.0-20180518054509-2e65f85255db // indirect
github.com/google/go-cmp v0.2.0 github.com/google/go-cmp v0.3.0
github.com/gophercloud/gophercloud v0.0.0-20190208042652-bc37892e1968 github.com/gophercloud/gophercloud v0.0.0-20190208042652-bc37892e1968
github.com/gophercloud/utils v0.0.0-20190128072930-fbb6ab446f01 // indirect github.com/gophercloud/utils v0.0.0-20190128072930-fbb6ab446f01 // indirect
github.com/gorilla/websocket v1.4.0 // indirect github.com/gorilla/websocket v1.4.0 // indirect

2
go.sum
View File

@ -130,6 +130,8 @@ github.com/google/btree v0.0.0-20180813153112-4030bb1f1f0c h1:964Od4U6p2jUkFxvCy
github.com/google/btree v0.0.0-20180813153112-4030bb1f1f0c/go.mod h1:lNA+9X1NB3Zf8V7Ke586lFgjr2dZNuvo3lPJSGZ5JPQ= github.com/google/btree v0.0.0-20180813153112-4030bb1f1f0c/go.mod h1:lNA+9X1NB3Zf8V7Ke586lFgjr2dZNuvo3lPJSGZ5JPQ=
github.com/google/go-cmp v0.2.0 h1:+dTQ8DZQJz0Mb/HjFlkptS1FeQ4cWSnN941F8aEG4SQ= github.com/google/go-cmp v0.2.0 h1:+dTQ8DZQJz0Mb/HjFlkptS1FeQ4cWSnN941F8aEG4SQ=
github.com/google/go-cmp v0.2.0/go.mod h1:oXzfMopK8JAjlY9xF4vHSVASa0yLyX7SntLO5aqRK0M= github.com/google/go-cmp v0.2.0/go.mod h1:oXzfMopK8JAjlY9xF4vHSVASa0yLyX7SntLO5aqRK0M=
github.com/google/go-cmp v0.3.0 h1:crn/baboCvb5fXaQ0IJ1SGTsTVrWpDsCWC8EGETZijY=
github.com/google/go-cmp v0.3.0/go.mod h1:8QqcDgzrUqlUb/G2PQTWiueGozuR1884gddMywk6iLU=
github.com/google/go-github v17.0.0+incompatible/go.mod h1:zLgOLi98H3fifZn+44m+umXrS52loVEgC2AApnigrVQ= github.com/google/go-github v17.0.0+incompatible/go.mod h1:zLgOLi98H3fifZn+44m+umXrS52loVEgC2AApnigrVQ=
github.com/google/go-querystring v1.0.0 h1:Xkwi/a1rcvNg1PPYe5vI8GbeBY/jrVuDX5ASuANWTrk= github.com/google/go-querystring v1.0.0 h1:Xkwi/a1rcvNg1PPYe5vI8GbeBY/jrVuDX5ASuANWTrk=
github.com/google/go-querystring v1.0.0/go.mod h1:odCYkC5MyYFN7vkCjXpyrEuKhc/BUO6wN/zVPAxq5ck= github.com/google/go-querystring v1.0.0/go.mod h1:odCYkC5MyYFN7vkCjXpyrEuKhc/BUO6wN/zVPAxq5ck=

View File

@ -11,6 +11,7 @@ import (
"unicode/utf8" "unicode/utf8"
"github.com/google/go-cmp/cmp" "github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/internal/function"
) )
// IgnoreFields returns an Option that ignores exported fields of the // IgnoreFields returns an Option that ignores exported fields of the
@ -112,6 +113,10 @@ func (tf ifaceFilter) filter(p cmp.Path) bool {
// In particular, unexported fields within the struct's exported fields // In particular, unexported fields within the struct's exported fields
// of struct types, including anonymous fields, will not be ignored unless the // of struct types, including anonymous fields, will not be ignored unless the
// type of the field itself is also passed to IgnoreUnexported. // type of the field itself is also passed to IgnoreUnexported.
//
// Avoid ignoring unexported fields of a type which you do not control (i.e. a
// type from another repository), as changes to the implementation of such types
// may change how the comparison behaves. Prefer a custom Comparer instead.
func IgnoreUnexported(typs ...interface{}) cmp.Option { func IgnoreUnexported(typs ...interface{}) cmp.Option {
ux := newUnexportedFilter(typs...) ux := newUnexportedFilter(typs...)
return cmp.FilterPath(ux.filter, cmp.Ignore()) return cmp.FilterPath(ux.filter, cmp.Ignore())
@ -143,3 +148,60 @@ func isExported(id string) bool {
r, _ := utf8.DecodeRuneInString(id) r, _ := utf8.DecodeRuneInString(id)
return unicode.IsUpper(r) return unicode.IsUpper(r)
} }
// IgnoreSliceElements returns an Option that ignores elements of []V.
// The discard function must be of the form "func(T) bool" which is used to
// ignore slice elements of type V, where V is assignable to T.
// Elements are ignored if the function reports true.
func IgnoreSliceElements(discardFunc interface{}) cmp.Option {
vf := reflect.ValueOf(discardFunc)
if !function.IsType(vf.Type(), function.ValuePredicate) || vf.IsNil() {
panic(fmt.Sprintf("invalid discard function: %T", discardFunc))
}
return cmp.FilterPath(func(p cmp.Path) bool {
si, ok := p.Index(-1).(cmp.SliceIndex)
if !ok {
return false
}
if !si.Type().AssignableTo(vf.Type().In(0)) {
return false
}
vx, vy := si.Values()
if vx.IsValid() && vf.Call([]reflect.Value{vx})[0].Bool() {
return true
}
if vy.IsValid() && vf.Call([]reflect.Value{vy})[0].Bool() {
return true
}
return false
}, cmp.Ignore())
}
// IgnoreMapEntries returns an Option that ignores entries of map[K]V.
// The discard function must be of the form "func(T, R) bool" which is used to
// ignore map entries of type K and V, where K and V are assignable to T and R.
// Entries are ignored if the function reports true.
func IgnoreMapEntries(discardFunc interface{}) cmp.Option {
vf := reflect.ValueOf(discardFunc)
if !function.IsType(vf.Type(), function.KeyValuePredicate) || vf.IsNil() {
panic(fmt.Sprintf("invalid discard function: %T", discardFunc))
}
return cmp.FilterPath(func(p cmp.Path) bool {
mi, ok := p.Index(-1).(cmp.MapIndex)
if !ok {
return false
}
if !mi.Key().Type().AssignableTo(vf.Type().In(0)) || !mi.Type().AssignableTo(vf.Type().In(1)) {
return false
}
k := mi.Key()
vx, vy := mi.Values()
if vx.IsValid() && vf.Call([]reflect.Value{k, vx})[0].Bool() {
return true
}
if vy.IsValid() && vf.Call([]reflect.Value{k, vy})[0].Bool() {
return true
}
return false
}, cmp.Ignore())
}

View File

@ -7,6 +7,7 @@ package cmpopts
import ( import (
"fmt" "fmt"
"reflect" "reflect"
"sort"
"github.com/google/go-cmp/cmp" "github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/internal/function" "github.com/google/go-cmp/cmp/internal/function"
@ -25,13 +26,13 @@ import (
// !less(y, x) for two elements x and y, their relative order is maintained. // !less(y, x) for two elements x and y, their relative order is maintained.
// //
// SortSlices can be used in conjunction with EquateEmpty. // SortSlices can be used in conjunction with EquateEmpty.
func SortSlices(less interface{}) cmp.Option { func SortSlices(lessFunc interface{}) cmp.Option {
vf := reflect.ValueOf(less) vf := reflect.ValueOf(lessFunc)
if !function.IsType(vf.Type(), function.Less) || vf.IsNil() { if !function.IsType(vf.Type(), function.Less) || vf.IsNil() {
panic(fmt.Sprintf("invalid less function: %T", less)) panic(fmt.Sprintf("invalid less function: %T", lessFunc))
} }
ss := sliceSorter{vf.Type().In(0), vf} ss := sliceSorter{vf.Type().In(0), vf}
return cmp.FilterValues(ss.filter, cmp.Transformer("Sort", ss.sort)) return cmp.FilterValues(ss.filter, cmp.Transformer("cmpopts.SortSlices", ss.sort))
} }
type sliceSorter struct { type sliceSorter struct {
@ -48,8 +49,8 @@ func (ss sliceSorter) filter(x, y interface{}) bool {
} }
// Check whether the slices are already sorted to avoid an infinite // Check whether the slices are already sorted to avoid an infinite
// recursion cycle applying the same transform to itself. // recursion cycle applying the same transform to itself.
ok1 := sliceIsSorted(x, func(i, j int) bool { return ss.less(vx, i, j) }) ok1 := sort.SliceIsSorted(x, func(i, j int) bool { return ss.less(vx, i, j) })
ok2 := sliceIsSorted(y, func(i, j int) bool { return ss.less(vy, i, j) }) ok2 := sort.SliceIsSorted(y, func(i, j int) bool { return ss.less(vy, i, j) })
return !ok1 || !ok2 return !ok1 || !ok2
} }
func (ss sliceSorter) sort(x interface{}) interface{} { func (ss sliceSorter) sort(x interface{}) interface{} {
@ -58,7 +59,7 @@ func (ss sliceSorter) sort(x interface{}) interface{} {
for i := 0; i < src.Len(); i++ { for i := 0; i < src.Len(); i++ {
dst.Index(i).Set(src.Index(i)) dst.Index(i).Set(src.Index(i))
} }
sortSliceStable(dst.Interface(), func(i, j int) bool { return ss.less(dst, i, j) }) sort.SliceStable(dst.Interface(), func(i, j int) bool { return ss.less(dst, i, j) })
ss.checkSort(dst) ss.checkSort(dst)
return dst.Interface() return dst.Interface()
} }
@ -96,13 +97,13 @@ func (ss sliceSorter) less(v reflect.Value, i, j int) bool {
// • Total: if x != y, then either less(x, y) or less(y, x) // • Total: if x != y, then either less(x, y) or less(y, x)
// //
// SortMaps can be used in conjunction with EquateEmpty. // SortMaps can be used in conjunction with EquateEmpty.
func SortMaps(less interface{}) cmp.Option { func SortMaps(lessFunc interface{}) cmp.Option {
vf := reflect.ValueOf(less) vf := reflect.ValueOf(lessFunc)
if !function.IsType(vf.Type(), function.Less) || vf.IsNil() { if !function.IsType(vf.Type(), function.Less) || vf.IsNil() {
panic(fmt.Sprintf("invalid less function: %T", less)) panic(fmt.Sprintf("invalid less function: %T", lessFunc))
} }
ms := mapSorter{vf.Type().In(0), vf} ms := mapSorter{vf.Type().In(0), vf}
return cmp.FilterValues(ms.filter, cmp.Transformer("Sort", ms.sort)) return cmp.FilterValues(ms.filter, cmp.Transformer("cmpopts.SortMaps", ms.sort))
} }
type mapSorter struct { type mapSorter struct {
@ -118,7 +119,10 @@ func (ms mapSorter) filter(x, y interface{}) bool {
} }
func (ms mapSorter) sort(x interface{}) interface{} { func (ms mapSorter) sort(x interface{}) interface{} {
src := reflect.ValueOf(x) src := reflect.ValueOf(x)
outType := mapEntryType(src.Type()) outType := reflect.StructOf([]reflect.StructField{
{Name: "K", Type: src.Type().Key()},
{Name: "V", Type: src.Type().Elem()},
})
dst := reflect.MakeSlice(reflect.SliceOf(outType), src.Len(), src.Len()) dst := reflect.MakeSlice(reflect.SliceOf(outType), src.Len(), src.Len())
for i, k := range src.MapKeys() { for i, k := range src.MapKeys() {
v := reflect.New(outType).Elem() v := reflect.New(outType).Elem()
@ -126,7 +130,7 @@ func (ms mapSorter) sort(x interface{}) interface{} {
v.Field(1).Set(src.MapIndex(k)) v.Field(1).Set(src.MapIndex(k))
dst.Index(i).Set(v) dst.Index(i).Set(v)
} }
sortSlice(dst.Interface(), func(i, j int) bool { return ms.less(dst, i, j) }) sort.Slice(dst.Interface(), func(i, j int) bool { return ms.less(dst, i, j) })
ms.checkSort(dst) ms.checkSort(dst)
return dst.Interface() return dst.Interface()
} }
@ -139,8 +143,5 @@ func (ms mapSorter) checkSort(v reflect.Value) {
} }
func (ms mapSorter) less(v reflect.Value, i, j int) bool { func (ms mapSorter) less(v reflect.Value, i, j int) bool {
vx, vy := v.Index(i).Field(0), v.Index(j).Field(0) vx, vy := v.Index(i).Field(0), v.Index(j).Field(0)
if !hasReflectStructOf {
vx, vy = vx.Elem(), vy.Elem()
}
return ms.fnc.Call([]reflect.Value{vx, vy})[0].Bool() return ms.fnc.Call([]reflect.Value{vx, vy})[0].Bool()
} }

View File

@ -1,46 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build !go1.8
package cmpopts
import (
"reflect"
"sort"
)
const hasReflectStructOf = false
func mapEntryType(reflect.Type) reflect.Type {
return reflect.TypeOf(struct{ K, V interface{} }{})
}
func sliceIsSorted(slice interface{}, less func(i, j int) bool) bool {
return sort.IsSorted(reflectSliceSorter{reflect.ValueOf(slice), less})
}
func sortSlice(slice interface{}, less func(i, j int) bool) {
sort.Sort(reflectSliceSorter{reflect.ValueOf(slice), less})
}
func sortSliceStable(slice interface{}, less func(i, j int) bool) {
sort.Stable(reflectSliceSorter{reflect.ValueOf(slice), less})
}
type reflectSliceSorter struct {
slice reflect.Value
less func(i, j int) bool
}
func (ss reflectSliceSorter) Len() int {
return ss.slice.Len()
}
func (ss reflectSliceSorter) Less(i, j int) bool {
return ss.less(i, j)
}
func (ss reflectSliceSorter) Swap(i, j int) {
vi := ss.slice.Index(i).Interface()
vj := ss.slice.Index(j).Interface()
ss.slice.Index(i).Set(reflect.ValueOf(vj))
ss.slice.Index(j).Set(reflect.ValueOf(vi))
}

View File

@ -1,31 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build go1.8
package cmpopts
import (
"reflect"
"sort"
)
const hasReflectStructOf = true
func mapEntryType(t reflect.Type) reflect.Type {
return reflect.StructOf([]reflect.StructField{
{Name: "K", Type: t.Key()},
{Name: "V", Type: t.Elem()},
})
}
func sliceIsSorted(slice interface{}, less func(i, j int) bool) bool {
return sort.SliceIsSorted(slice, less)
}
func sortSlice(slice interface{}, less func(i, j int) bool) {
sort.Slice(slice, less)
}
func sortSliceStable(slice interface{}, less func(i, j int) bool) {
sort.SliceStable(slice, less)
}

35
vendor/github.com/google/go-cmp/cmp/cmpopts/xform.go generated vendored Normal file
View File

@ -0,0 +1,35 @@
// Copyright 2018, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmpopts
import (
"github.com/google/go-cmp/cmp"
)
type xformFilter struct{ xform cmp.Option }
func (xf xformFilter) filter(p cmp.Path) bool {
for _, ps := range p {
if t, ok := ps.(cmp.Transform); ok && t.Option() == xf.xform {
return false
}
}
return true
}
// AcyclicTransformer returns a Transformer with a filter applied that ensures
// that the transformer cannot be recursively applied upon its own output.
//
// An example use case is a transformer that splits a string by lines:
// AcyclicTransformer("SplitLines", func(s string) []string{
// return strings.Split(s, "\n")
// })
//
// Had this been an unfiltered Transformer instead, this would result in an
// infinite cycle converting a string to []string to [][]string and so on.
func AcyclicTransformer(name string, xformFunc interface{}) cmp.Option {
xf := xformFilter{cmp.Transformer(name, xformFunc)}
return cmp.FilterPath(xf.filter, xf.xform)
}

View File

@ -29,26 +29,17 @@ package cmp
import ( import (
"fmt" "fmt"
"reflect" "reflect"
"strings"
"github.com/google/go-cmp/cmp/internal/diff" "github.com/google/go-cmp/cmp/internal/diff"
"github.com/google/go-cmp/cmp/internal/flags"
"github.com/google/go-cmp/cmp/internal/function" "github.com/google/go-cmp/cmp/internal/function"
"github.com/google/go-cmp/cmp/internal/value" "github.com/google/go-cmp/cmp/internal/value"
) )
// BUG(dsnet): Maps with keys containing NaN values cannot be properly compared due to
// the reflection package's inability to retrieve such entries. Equal will panic
// anytime it comes across a NaN key, but this behavior may change.
//
// See https://golang.org/issue/11104 for more details.
var nothing = reflect.Value{}
// Equal reports whether x and y are equal by recursively applying the // Equal reports whether x and y are equal by recursively applying the
// following rules in the given order to x and y and all of their sub-values: // following rules in the given order to x and y and all of their sub-values:
// //
// • If two values are not of the same type, then they are never equal
// and the overall result is false.
//
// • Let S be the set of all Ignore, Transformer, and Comparer options that // • Let S be the set of all Ignore, Transformer, and Comparer options that
// remain after applying all path filters, value filters, and type filters. // remain after applying all path filters, value filters, and type filters.
// If at least one Ignore exists in S, then the comparison is ignored. // If at least one Ignore exists in S, then the comparison is ignored.
@ -61,43 +52,79 @@ var nothing = reflect.Value{}
// //
// • If the values have an Equal method of the form "(T) Equal(T) bool" or // • If the values have an Equal method of the form "(T) Equal(T) bool" or
// "(T) Equal(I) bool" where T is assignable to I, then use the result of // "(T) Equal(I) bool" where T is assignable to I, then use the result of
// x.Equal(y) even if x or y is nil. // x.Equal(y) even if x or y is nil. Otherwise, no such method exists and
// Otherwise, no such method exists and evaluation proceeds to the next rule. // evaluation proceeds to the next rule.
// //
// • Lastly, try to compare x and y based on their basic kinds. // • Lastly, try to compare x and y based on their basic kinds.
// Simple kinds like booleans, integers, floats, complex numbers, strings, and // Simple kinds like booleans, integers, floats, complex numbers, strings, and
// channels are compared using the equivalent of the == operator in Go. // channels are compared using the equivalent of the == operator in Go.
// Functions are only equal if they are both nil, otherwise they are unequal. // Functions are only equal if they are both nil, otherwise they are unequal.
// Pointers are equal if the underlying values they point to are also equal.
// Interfaces are equal if their underlying concrete values are also equal.
// //
// Structs are equal if all of their fields are equal. If a struct contains // Structs are equal if recursively calling Equal on all fields report equal.
// unexported fields, Equal panics unless the AllowUnexported option is used or // If a struct contains unexported fields, Equal panics unless an Ignore option
// an Ignore option (e.g., cmpopts.IgnoreUnexported) ignores that field. // (e.g., cmpopts.IgnoreUnexported) ignores that field or the AllowUnexported
// option explicitly permits comparing the unexported field.
// //
// Arrays, slices, and maps are equal if they are both nil or both non-nil // Slices are equal if they are both nil or both non-nil, where recursively
// with the same length and the elements at each index or key are equal. // calling Equal on all non-ignored slice or array elements report equal.
// Note that a non-nil empty slice and a nil slice are not equal. // Empty non-nil slices and nil slices are not equal; to equate empty slices,
// To equate empty slices and maps, consider using cmpopts.EquateEmpty. // consider using cmpopts.EquateEmpty.
//
// Maps are equal if they are both nil or both non-nil, where recursively
// calling Equal on all non-ignored map entries report equal.
// Map keys are equal according to the == operator. // Map keys are equal according to the == operator.
// To use custom comparisons for map keys, consider using cmpopts.SortMaps. // To use custom comparisons for map keys, consider using cmpopts.SortMaps.
// Empty non-nil maps and nil maps are not equal; to equate empty maps,
// consider using cmpopts.EquateEmpty.
//
// Pointers and interfaces are equal if they are both nil or both non-nil,
// where they have the same underlying concrete type and recursively
// calling Equal on the underlying values reports equal.
func Equal(x, y interface{}, opts ...Option) bool { func Equal(x, y interface{}, opts ...Option) bool {
vx := reflect.ValueOf(x)
vy := reflect.ValueOf(y)
// If the inputs are different types, auto-wrap them in an empty interface
// so that they have the same parent type.
var t reflect.Type
if !vx.IsValid() || !vy.IsValid() || vx.Type() != vy.Type() {
t = reflect.TypeOf((*interface{})(nil)).Elem()
if vx.IsValid() {
vvx := reflect.New(t).Elem()
vvx.Set(vx)
vx = vvx
}
if vy.IsValid() {
vvy := reflect.New(t).Elem()
vvy.Set(vy)
vy = vvy
}
} else {
t = vx.Type()
}
s := newState(opts) s := newState(opts)
s.compareAny(reflect.ValueOf(x), reflect.ValueOf(y)) s.compareAny(&pathStep{t, vx, vy})
return s.result.Equal() return s.result.Equal()
} }
// Diff returns a human-readable report of the differences between two values. // Diff returns a human-readable report of the differences between two values.
// It returns an empty string if and only if Equal returns true for the same // It returns an empty string if and only if Equal returns true for the same
// input values and options. The output string will use the "-" symbol to // input values and options.
// indicate elements removed from x, and the "+" symbol to indicate elements
// added to y.
// //
// Do not depend on this output being stable. // The output is displayed as a literal in pseudo-Go syntax.
// At the start of each line, a "-" prefix indicates an element removed from x,
// a "+" prefix to indicates an element added to y, and the lack of a prefix
// indicates an element common to both x and y. If possible, the output
// uses fmt.Stringer.String or error.Error methods to produce more humanly
// readable outputs. In such cases, the string is prefixed with either an
// 's' or 'e' character, respectively, to indicate that the method was called.
//
// Do not depend on this output being stable. If you need the ability to
// programmatically interpret the difference, consider using a custom Reporter.
func Diff(x, y interface{}, opts ...Option) string { func Diff(x, y interface{}, opts ...Option) string {
r := new(defaultReporter) r := new(defaultReporter)
opts = Options{Options(opts), r} eq := Equal(x, y, Options(opts), Reporter(r))
eq := Equal(x, y, opts...)
d := r.String() d := r.String()
if (d == "") != eq { if (d == "") != eq {
panic("inconsistent difference and equality results") panic("inconsistent difference and equality results")
@ -108,9 +135,13 @@ func Diff(x, y interface{}, opts ...Option) string {
type state struct { type state struct {
// These fields represent the "comparison state". // These fields represent the "comparison state".
// Calling statelessCompare must not result in observable changes to these. // Calling statelessCompare must not result in observable changes to these.
result diff.Result // The current result of comparison result diff.Result // The current result of comparison
curPath Path // The current path in the value tree curPath Path // The current path in the value tree
reporter reporter // Optional reporter used for difference formatting reporters []reporter // Optional reporters
// recChecker checks for infinite cycles applying the same set of
// transformers upon the output of itself.
recChecker recChecker
// dynChecker triggers pseudo-random checks for option correctness. // dynChecker triggers pseudo-random checks for option correctness.
// It is safe for statelessCompare to mutate this value. // It is safe for statelessCompare to mutate this value.
@ -122,10 +153,9 @@ type state struct {
} }
func newState(opts []Option) *state { func newState(opts []Option) *state {
s := new(state) // Always ensure a validator option exists to validate the inputs.
for _, opt := range opts { s := &state{opts: Options{validator{}}}
s.processOption(opt) s.processOption(Options(opts))
}
return s return s
} }
@ -152,10 +182,7 @@ func (s *state) processOption(opt Option) {
s.exporters[t] = true s.exporters[t] = true
} }
case reporter: case reporter:
if s.reporter != nil { s.reporters = append(s.reporters, opt)
panic("difference reporter already registered")
}
s.reporter = opt
default: default:
panic(fmt.Sprintf("unknown option %T", opt)) panic(fmt.Sprintf("unknown option %T", opt))
} }
@ -164,153 +191,88 @@ func (s *state) processOption(opt Option) {
// statelessCompare compares two values and returns the result. // statelessCompare compares two values and returns the result.
// This function is stateless in that it does not alter the current result, // This function is stateless in that it does not alter the current result,
// or output to any registered reporters. // or output to any registered reporters.
func (s *state) statelessCompare(vx, vy reflect.Value) diff.Result { func (s *state) statelessCompare(step PathStep) diff.Result {
// We do not save and restore the curPath because all of the compareX // We do not save and restore the curPath because all of the compareX
// methods should properly push and pop from the path. // methods should properly push and pop from the path.
// It is an implementation bug if the contents of curPath differs from // It is an implementation bug if the contents of curPath differs from
// when calling this function to when returning from it. // when calling this function to when returning from it.
oldResult, oldReporter := s.result, s.reporter oldResult, oldReporters := s.result, s.reporters
s.result = diff.Result{} // Reset result s.result = diff.Result{} // Reset result
s.reporter = nil // Remove reporter to avoid spurious printouts s.reporters = nil // Remove reporters to avoid spurious printouts
s.compareAny(vx, vy) s.compareAny(step)
res := s.result res := s.result
s.result, s.reporter = oldResult, oldReporter s.result, s.reporters = oldResult, oldReporters
return res return res
} }
func (s *state) compareAny(vx, vy reflect.Value) { func (s *state) compareAny(step PathStep) {
// TODO: Support cyclic data structures. // Update the path stack.
s.curPath.push(step)
defer s.curPath.pop()
for _, r := range s.reporters {
r.PushStep(step)
defer r.PopStep()
}
s.recChecker.Check(s.curPath)
// Rule 0: Differing types are never equal. // Obtain the current type and values.
if !vx.IsValid() || !vy.IsValid() { t := step.Type()
s.report(vx.IsValid() == vy.IsValid(), vx, vy) vx, vy := step.Values()
return
}
if vx.Type() != vy.Type() {
s.report(false, vx, vy) // Possible for path to be empty
return
}
t := vx.Type()
if len(s.curPath) == 0 {
s.curPath.push(&pathStep{typ: t})
defer s.curPath.pop()
}
vx, vy = s.tryExporting(vx, vy)
// Rule 1: Check whether an option applies on this node in the value tree. // Rule 1: Check whether an option applies on this node in the value tree.
if s.tryOptions(vx, vy, t) { if s.tryOptions(t, vx, vy) {
return return
} }
// Rule 2: Check whether the type has a valid Equal method. // Rule 2: Check whether the type has a valid Equal method.
if s.tryMethod(vx, vy, t) { if s.tryMethod(t, vx, vy) {
return return
} }
// Rule 3: Recursively descend into each value's underlying kind. // Rule 3: Compare based on the underlying kind.
switch t.Kind() { switch t.Kind() {
case reflect.Bool: case reflect.Bool:
s.report(vx.Bool() == vy.Bool(), vx, vy) s.report(vx.Bool() == vy.Bool(), 0)
return
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
s.report(vx.Int() == vy.Int(), vx, vy) s.report(vx.Int() == vy.Int(), 0)
return
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
s.report(vx.Uint() == vy.Uint(), vx, vy) s.report(vx.Uint() == vy.Uint(), 0)
return
case reflect.Float32, reflect.Float64: case reflect.Float32, reflect.Float64:
s.report(vx.Float() == vy.Float(), vx, vy) s.report(vx.Float() == vy.Float(), 0)
return
case reflect.Complex64, reflect.Complex128: case reflect.Complex64, reflect.Complex128:
s.report(vx.Complex() == vy.Complex(), vx, vy) s.report(vx.Complex() == vy.Complex(), 0)
return
case reflect.String: case reflect.String:
s.report(vx.String() == vy.String(), vx, vy) s.report(vx.String() == vy.String(), 0)
return
case reflect.Chan, reflect.UnsafePointer: case reflect.Chan, reflect.UnsafePointer:
s.report(vx.Pointer() == vy.Pointer(), vx, vy) s.report(vx.Pointer() == vy.Pointer(), 0)
return
case reflect.Func: case reflect.Func:
s.report(vx.IsNil() && vy.IsNil(), vx, vy) s.report(vx.IsNil() && vy.IsNil(), 0)
return
case reflect.Ptr:
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
}
s.curPath.push(&indirect{pathStep{t.Elem()}})
defer s.curPath.pop()
s.compareAny(vx.Elem(), vy.Elem())
return
case reflect.Interface:
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
}
if vx.Elem().Type() != vy.Elem().Type() {
s.report(false, vx.Elem(), vy.Elem())
return
}
s.curPath.push(&typeAssertion{pathStep{vx.Elem().Type()}})
defer s.curPath.pop()
s.compareAny(vx.Elem(), vy.Elem())
return
case reflect.Slice:
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
}
fallthrough
case reflect.Array:
s.compareArray(vx, vy, t)
return
case reflect.Map:
s.compareMap(vx, vy, t)
return
case reflect.Struct: case reflect.Struct:
s.compareStruct(vx, vy, t) s.compareStruct(t, vx, vy)
return case reflect.Slice, reflect.Array:
s.compareSlice(t, vx, vy)
case reflect.Map:
s.compareMap(t, vx, vy)
case reflect.Ptr:
s.comparePtr(t, vx, vy)
case reflect.Interface:
s.compareInterface(t, vx, vy)
default: default:
panic(fmt.Sprintf("%v kind not handled", t.Kind())) panic(fmt.Sprintf("%v kind not handled", t.Kind()))
} }
} }
func (s *state) tryExporting(vx, vy reflect.Value) (reflect.Value, reflect.Value) { func (s *state) tryOptions(t reflect.Type, vx, vy reflect.Value) bool {
if sf, ok := s.curPath[len(s.curPath)-1].(*structField); ok && sf.unexported {
if sf.force {
// Use unsafe pointer arithmetic to get read-write access to an
// unexported field in the struct.
vx = unsafeRetrieveField(sf.pvx, sf.field)
vy = unsafeRetrieveField(sf.pvy, sf.field)
} else {
// We are not allowed to export the value, so invalidate them
// so that tryOptions can panic later if not explicitly ignored.
vx = nothing
vy = nothing
}
}
return vx, vy
}
func (s *state) tryOptions(vx, vy reflect.Value, t reflect.Type) bool {
// If there were no FilterValues, we will not detect invalid inputs,
// so manually check for them and append invalid if necessary.
// We still evaluate the options since an ignore can override invalid.
opts := s.opts
if !vx.IsValid() || !vy.IsValid() {
opts = Options{opts, invalid{}}
}
// Evaluate all filters and apply the remaining options. // Evaluate all filters and apply the remaining options.
if opt := opts.filter(s, vx, vy, t); opt != nil { if opt := s.opts.filter(s, t, vx, vy); opt != nil {
opt.apply(s, vx, vy) opt.apply(s, vx, vy)
return true return true
} }
return false return false
} }
func (s *state) tryMethod(vx, vy reflect.Value, t reflect.Type) bool { func (s *state) tryMethod(t reflect.Type, vx, vy reflect.Value) bool {
// Check if this type even has an Equal method. // Check if this type even has an Equal method.
m, ok := t.MethodByName("Equal") m, ok := t.MethodByName("Equal")
if !ok || !function.IsType(m.Type, function.EqualAssignable) { if !ok || !function.IsType(m.Type, function.EqualAssignable) {
@ -318,11 +280,11 @@ func (s *state) tryMethod(vx, vy reflect.Value, t reflect.Type) bool {
} }
eq := s.callTTBFunc(m.Func, vx, vy) eq := s.callTTBFunc(m.Func, vx, vy)
s.report(eq, vx, vy) s.report(eq, reportByMethod)
return true return true
} }
func (s *state) callTRFunc(f, v reflect.Value) reflect.Value { func (s *state) callTRFunc(f, v reflect.Value, step Transform) reflect.Value {
v = sanitizeValue(v, f.Type().In(0)) v = sanitizeValue(v, f.Type().In(0))
if !s.dynChecker.Next() { if !s.dynChecker.Next() {
return f.Call([]reflect.Value{v})[0] return f.Call([]reflect.Value{v})[0]
@ -333,15 +295,15 @@ func (s *state) callTRFunc(f, v reflect.Value) reflect.Value {
// unsafe mutations to the input. // unsafe mutations to the input.
c := make(chan reflect.Value) c := make(chan reflect.Value)
go detectRaces(c, f, v) go detectRaces(c, f, v)
got := <-c
want := f.Call([]reflect.Value{v})[0] want := f.Call([]reflect.Value{v})[0]
if got := <-c; !s.statelessCompare(got, want).Equal() { if step.vx, step.vy = got, want; !s.statelessCompare(step).Equal() {
// To avoid false-positives with non-reflexive equality operations, // To avoid false-positives with non-reflexive equality operations,
// we sanity check whether a value is equal to itself. // we sanity check whether a value is equal to itself.
if !s.statelessCompare(want, want).Equal() { if step.vx, step.vy = want, want; !s.statelessCompare(step).Equal() {
return want return want
} }
fn := getFuncName(f.Pointer()) panic(fmt.Sprintf("non-deterministic function detected: %s", function.NameOf(f)))
panic(fmt.Sprintf("non-deterministic function detected: %s", fn))
} }
return want return want
} }
@ -359,10 +321,10 @@ func (s *state) callTTBFunc(f, x, y reflect.Value) bool {
// unsafe mutations to the input. // unsafe mutations to the input.
c := make(chan reflect.Value) c := make(chan reflect.Value)
go detectRaces(c, f, y, x) go detectRaces(c, f, y, x)
got := <-c
want := f.Call([]reflect.Value{x, y})[0].Bool() want := f.Call([]reflect.Value{x, y})[0].Bool()
if got := <-c; !got.IsValid() || got.Bool() != want { if !got.IsValid() || got.Bool() != want {
fn := getFuncName(f.Pointer()) panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", function.NameOf(f)))
panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", fn))
} }
return want return want
} }
@ -380,140 +342,241 @@ func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) {
// assuming that T is assignable to R. // assuming that T is assignable to R.
// Otherwise, it returns the input value as is. // Otherwise, it returns the input value as is.
func sanitizeValue(v reflect.Value, t reflect.Type) reflect.Value { func sanitizeValue(v reflect.Value, t reflect.Type) reflect.Value {
// TODO(dsnet): Remove this hacky workaround. // TODO(dsnet): Workaround for reflect bug (https://golang.org/issue/22143).
// See https://golang.org/issue/22143 if !flags.AtLeastGo110 {
if v.Kind() == reflect.Interface && v.IsNil() && v.Type() != t { if v.Kind() == reflect.Interface && v.IsNil() && v.Type() != t {
return reflect.New(t).Elem() return reflect.New(t).Elem()
}
} }
return v return v
} }
func (s *state) compareArray(vx, vy reflect.Value, t reflect.Type) { func (s *state) compareStruct(t reflect.Type, vx, vy reflect.Value) {
step := &sliceIndex{pathStep{t.Elem()}, 0, 0}
s.curPath.push(step)
// Compute an edit-script for slices vx and vy.
es := diff.Difference(vx.Len(), vy.Len(), func(ix, iy int) diff.Result {
step.xkey, step.ykey = ix, iy
return s.statelessCompare(vx.Index(ix), vy.Index(iy))
})
// Report the entire slice as is if the arrays are of primitive kind,
// and the arrays are different enough.
isPrimitive := false
switch t.Elem().Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
reflect.Bool, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
isPrimitive = true
}
if isPrimitive && es.Dist() > (vx.Len()+vy.Len())/4 {
s.curPath.pop() // Pop first since we are reporting the whole slice
s.report(false, vx, vy)
return
}
// Replay the edit-script.
var ix, iy int
for _, e := range es {
switch e {
case diff.UniqueX:
step.xkey, step.ykey = ix, -1
s.report(false, vx.Index(ix), nothing)
ix++
case diff.UniqueY:
step.xkey, step.ykey = -1, iy
s.report(false, nothing, vy.Index(iy))
iy++
default:
step.xkey, step.ykey = ix, iy
if e == diff.Identity {
s.report(true, vx.Index(ix), vy.Index(iy))
} else {
s.compareAny(vx.Index(ix), vy.Index(iy))
}
ix++
iy++
}
}
s.curPath.pop()
return
}
func (s *state) compareMap(vx, vy reflect.Value, t reflect.Type) {
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
}
// We combine and sort the two map keys so that we can perform the
// comparisons in a deterministic order.
step := &mapIndex{pathStep: pathStep{t.Elem()}}
s.curPath.push(step)
defer s.curPath.pop()
for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) {
step.key = k
vvx := vx.MapIndex(k)
vvy := vy.MapIndex(k)
switch {
case vvx.IsValid() && vvy.IsValid():
s.compareAny(vvx, vvy)
case vvx.IsValid() && !vvy.IsValid():
s.report(false, vvx, nothing)
case !vvx.IsValid() && vvy.IsValid():
s.report(false, nothing, vvy)
default:
// It is possible for both vvx and vvy to be invalid if the
// key contained a NaN value in it. There is no way in
// reflection to be able to retrieve these values.
// See https://golang.org/issue/11104
panic(fmt.Sprintf("%#v has map key with NaNs", s.curPath))
}
}
}
func (s *state) compareStruct(vx, vy reflect.Value, t reflect.Type) {
var vax, vay reflect.Value // Addressable versions of vx and vy var vax, vay reflect.Value // Addressable versions of vx and vy
step := &structField{} step := StructField{&structField{}}
s.curPath.push(step)
defer s.curPath.pop()
for i := 0; i < t.NumField(); i++ { for i := 0; i < t.NumField(); i++ {
vvx := vx.Field(i)
vvy := vy.Field(i)
step.typ = t.Field(i).Type step.typ = t.Field(i).Type
step.vx = vx.Field(i)
step.vy = vy.Field(i)
step.name = t.Field(i).Name step.name = t.Field(i).Name
step.idx = i step.idx = i
step.unexported = !isExported(step.name) step.unexported = !isExported(step.name)
if step.unexported { if step.unexported {
if step.name == "_" {
continue
}
// Defer checking of unexported fields until later to give an // Defer checking of unexported fields until later to give an
// Ignore a chance to ignore the field. // Ignore a chance to ignore the field.
if !vax.IsValid() || !vay.IsValid() { if !vax.IsValid() || !vay.IsValid() {
// For unsafeRetrieveField to work, the parent struct must // For retrieveUnexportedField to work, the parent struct must
// be addressable. Create a new copy of the values if // be addressable. Create a new copy of the values if
// necessary to make them addressable. // necessary to make them addressable.
vax = makeAddressable(vx) vax = makeAddressable(vx)
vay = makeAddressable(vy) vay = makeAddressable(vy)
} }
step.force = s.exporters[t] step.mayForce = s.exporters[t]
step.pvx = vax step.pvx = vax
step.pvy = vay step.pvy = vay
step.field = t.Field(i) step.field = t.Field(i)
} }
s.compareAny(vvx, vvy) s.compareAny(step)
} }
} }
// report records the result of a single comparison. func (s *state) compareSlice(t reflect.Type, vx, vy reflect.Value) {
// It also calls Report if any reporter is registered. isSlice := t.Kind() == reflect.Slice
func (s *state) report(eq bool, vx, vy reflect.Value) { if isSlice && (vx.IsNil() || vy.IsNil()) {
if eq { s.report(vx.IsNil() && vy.IsNil(), 0)
s.result.NSame++ return
} else {
s.result.NDiff++
} }
if s.reporter != nil {
s.reporter.Report(vx, vy, eq, s.curPath) // TODO: Support cyclic data structures.
step := SliceIndex{&sliceIndex{pathStep: pathStep{typ: t.Elem()}}}
withIndexes := func(ix, iy int) SliceIndex {
if ix >= 0 {
step.vx, step.xkey = vx.Index(ix), ix
} else {
step.vx, step.xkey = reflect.Value{}, -1
}
if iy >= 0 {
step.vy, step.ykey = vy.Index(iy), iy
} else {
step.vy, step.ykey = reflect.Value{}, -1
}
return step
}
// Ignore options are able to ignore missing elements in a slice.
// However, detecting these reliably requires an optimal differencing
// algorithm, for which diff.Difference is not.
//
// Instead, we first iterate through both slices to detect which elements
// would be ignored if standing alone. The index of non-discarded elements
// are stored in a separate slice, which diffing is then performed on.
var indexesX, indexesY []int
var ignoredX, ignoredY []bool
for ix := 0; ix < vx.Len(); ix++ {
ignored := s.statelessCompare(withIndexes(ix, -1)).NumDiff == 0
if !ignored {
indexesX = append(indexesX, ix)
}
ignoredX = append(ignoredX, ignored)
}
for iy := 0; iy < vy.Len(); iy++ {
ignored := s.statelessCompare(withIndexes(-1, iy)).NumDiff == 0
if !ignored {
indexesY = append(indexesY, iy)
}
ignoredY = append(ignoredY, ignored)
}
// Compute an edit-script for slices vx and vy (excluding ignored elements).
edits := diff.Difference(len(indexesX), len(indexesY), func(ix, iy int) diff.Result {
return s.statelessCompare(withIndexes(indexesX[ix], indexesY[iy]))
})
// Replay the ignore-scripts and the edit-script.
var ix, iy int
for ix < vx.Len() || iy < vy.Len() {
var e diff.EditType
switch {
case ix < len(ignoredX) && ignoredX[ix]:
e = diff.UniqueX
case iy < len(ignoredY) && ignoredY[iy]:
e = diff.UniqueY
default:
e, edits = edits[0], edits[1:]
}
switch e {
case diff.UniqueX:
s.compareAny(withIndexes(ix, -1))
ix++
case diff.UniqueY:
s.compareAny(withIndexes(-1, iy))
iy++
default:
s.compareAny(withIndexes(ix, iy))
ix++
iy++
}
}
}
func (s *state) compareMap(t reflect.Type, vx, vy reflect.Value) {
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), 0)
return
}
// TODO: Support cyclic data structures.
// We combine and sort the two map keys so that we can perform the
// comparisons in a deterministic order.
step := MapIndex{&mapIndex{pathStep: pathStep{typ: t.Elem()}}}
for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) {
step.vx = vx.MapIndex(k)
step.vy = vy.MapIndex(k)
step.key = k
if !step.vx.IsValid() && !step.vy.IsValid() {
// It is possible for both vx and vy to be invalid if the
// key contained a NaN value in it.
//
// Even with the ability to retrieve NaN keys in Go 1.12,
// there still isn't a sensible way to compare the values since
// a NaN key may map to multiple unordered values.
// The most reasonable way to compare NaNs would be to compare the
// set of values. However, this is impossible to do efficiently
// since set equality is provably an O(n^2) operation given only
// an Equal function. If we had a Less function or Hash function,
// this could be done in O(n*log(n)) or O(n), respectively.
//
// Rather than adding complex logic to deal with NaNs, make it
// the user's responsibility to compare such obscure maps.
const help = "consider providing a Comparer to compare the map"
panic(fmt.Sprintf("%#v has map key with NaNs\n%s", s.curPath, help))
}
s.compareAny(step)
}
}
func (s *state) comparePtr(t reflect.Type, vx, vy reflect.Value) {
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), 0)
return
}
// TODO: Support cyclic data structures.
vx, vy = vx.Elem(), vy.Elem()
s.compareAny(Indirect{&indirect{pathStep{t.Elem(), vx, vy}}})
}
func (s *state) compareInterface(t reflect.Type, vx, vy reflect.Value) {
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), 0)
return
}
vx, vy = vx.Elem(), vy.Elem()
if vx.Type() != vy.Type() {
s.report(false, 0)
return
}
s.compareAny(TypeAssertion{&typeAssertion{pathStep{vx.Type(), vx, vy}}})
}
func (s *state) report(eq bool, rf resultFlags) {
if rf&reportByIgnore == 0 {
if eq {
s.result.NumSame++
rf |= reportEqual
} else {
s.result.NumDiff++
rf |= reportUnequal
}
}
for _, r := range s.reporters {
r.Report(Result{flags: rf})
}
}
// recChecker tracks the state needed to periodically perform checks that
// user provided transformers are not stuck in an infinitely recursive cycle.
type recChecker struct{ next int }
// Check scans the Path for any recursive transformers and panics when any
// recursive transformers are detected. Note that the presence of a
// recursive Transformer does not necessarily imply an infinite cycle.
// As such, this check only activates after some minimal number of path steps.
func (rc *recChecker) Check(p Path) {
const minLen = 1 << 16
if rc.next == 0 {
rc.next = minLen
}
if len(p) < rc.next {
return
}
rc.next <<= 1
// Check whether the same transformer has appeared at least twice.
var ss []string
m := map[Option]int{}
for _, ps := range p {
if t, ok := ps.(Transform); ok {
t := t.Option()
if m[t] == 1 { // Transformer was used exactly once before
tf := t.(*transformer).fnc.Type()
ss = append(ss, fmt.Sprintf("%v: %v => %v", t, tf.In(0), tf.Out(0)))
}
m[t]++
}
}
if len(ss) > 0 {
const warning = "recursive set of Transformers detected"
const help = "consider using cmpopts.AcyclicTransformer"
set := strings.Join(ss, "\n\t")
panic(fmt.Sprintf("%s:\n\t%s\n%s", warning, set, help))
} }
} }

View File

@ -2,7 +2,7 @@
// Use of this source code is governed by a BSD-style // Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file. // license that can be found in the LICENSE.md file.
// +build purego appengine js // +build purego
package cmp package cmp
@ -10,6 +10,6 @@ import "reflect"
const supportAllowUnexported = false const supportAllowUnexported = false
func unsafeRetrieveField(reflect.Value, reflect.StructField) reflect.Value { func retrieveUnexportedField(reflect.Value, reflect.StructField) reflect.Value {
panic("unsafeRetrieveField is not implemented") panic("retrieveUnexportedField is not implemented")
} }

View File

@ -2,7 +2,7 @@
// Use of this source code is governed by a BSD-style // Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file. // license that can be found in the LICENSE.md file.
// +build !purego,!appengine,!js // +build !purego
package cmp package cmp
@ -13,11 +13,11 @@ import (
const supportAllowUnexported = true const supportAllowUnexported = true
// unsafeRetrieveField uses unsafe to forcibly retrieve any field from a struct // retrieveUnexportedField uses unsafe to forcibly retrieve any field from
// such that the value has read-write permissions. // a struct such that the value has read-write permissions.
// //
// The parent struct, v, must be addressable, while f must be a StructField // The parent struct, v, must be addressable, while f must be a StructField
// describing the field to retrieve. // describing the field to retrieve.
func unsafeRetrieveField(v reflect.Value, f reflect.StructField) reflect.Value { func retrieveUnexportedField(v reflect.Value, f reflect.StructField) reflect.Value {
return reflect.NewAt(f.Type, unsafe.Pointer(v.UnsafeAddr()+f.Offset)).Elem() return reflect.NewAt(f.Type, unsafe.Pointer(v.UnsafeAddr()+f.Offset)).Elem()
} }

View File

@ -2,7 +2,7 @@
// Use of this source code is governed by a BSD-style // Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file. // license that can be found in the LICENSE.md file.
// +build !debug // +build !cmp_debug
package diff package diff

View File

@ -2,7 +2,7 @@
// Use of this source code is governed by a BSD-style // Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file. // license that can be found in the LICENSE.md file.
// +build debug // +build cmp_debug
package diff package diff
@ -14,7 +14,7 @@ import (
) )
// The algorithm can be seen running in real-time by enabling debugging: // The algorithm can be seen running in real-time by enabling debugging:
// go test -tags=debug -v // go test -tags=cmp_debug -v
// //
// Example output: // Example output:
// === RUN TestDifference/#34 // === RUN TestDifference/#34

View File

@ -85,22 +85,31 @@ func (es EditScript) LenY() int { return len(es) - es.stats().NX }
type EqualFunc func(ix int, iy int) Result type EqualFunc func(ix int, iy int) Result
// Result is the result of comparison. // Result is the result of comparison.
// NSame is the number of sub-elements that are equal. // NumSame is the number of sub-elements that are equal.
// NDiff is the number of sub-elements that are not equal. // NumDiff is the number of sub-elements that are not equal.
type Result struct{ NSame, NDiff int } type Result struct{ NumSame, NumDiff int }
// BoolResult returns a Result that is either Equal or not Equal.
func BoolResult(b bool) Result {
if b {
return Result{NumSame: 1} // Equal, Similar
} else {
return Result{NumDiff: 2} // Not Equal, not Similar
}
}
// Equal indicates whether the symbols are equal. Two symbols are equal // Equal indicates whether the symbols are equal. Two symbols are equal
// if and only if NDiff == 0. If Equal, then they are also Similar. // if and only if NumDiff == 0. If Equal, then they are also Similar.
func (r Result) Equal() bool { return r.NDiff == 0 } func (r Result) Equal() bool { return r.NumDiff == 0 }
// Similar indicates whether two symbols are similar and may be represented // Similar indicates whether two symbols are similar and may be represented
// by using the Modified type. As a special case, we consider binary comparisons // by using the Modified type. As a special case, we consider binary comparisons
// (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar. // (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar.
// //
// The exact ratio of NSame to NDiff to determine similarity may change. // The exact ratio of NumSame to NumDiff to determine similarity may change.
func (r Result) Similar() bool { func (r Result) Similar() bool {
// Use NSame+1 to offset NSame so that binary comparisons are similar. // Use NumSame+1 to offset NumSame so that binary comparisons are similar.
return r.NSame+1 >= r.NDiff return r.NumSame+1 >= r.NumDiff
} }
// Difference reports whether two lists of lengths nx and ny are equal // Difference reports whether two lists of lengths nx and ny are equal
@ -191,9 +200,9 @@ func Difference(nx, ny int, f EqualFunc) (es EditScript) {
// that two lists commonly differ because elements were added to the front // that two lists commonly differ because elements were added to the front
// or end of the other list. // or end of the other list.
// //
// Running the tests with the "debug" build tag prints a visualization of // Running the tests with the "cmp_debug" build tag prints a visualization
// the algorithm running in real-time. This is educational for understanding // of the algorithm running in real-time. This is educational for
// how the algorithm works. See debug_enable.go. // understanding how the algorithm works. See debug_enable.go.
f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es) f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es)
for { for {
// Forward search from the beginning. // Forward search from the beginning.

View File

@ -0,0 +1,9 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package flags
// Deterministic controls whether the output of Diff should be deterministic.
// This is only used for testing.
var Deterministic bool

View File

@ -0,0 +1,10 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build !go1.10
package flags
// AtLeastGo110 reports whether the Go toolchain is at least Go 1.10.
const AtLeastGo110 = false

View File

@ -0,0 +1,10 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build go1.10
package flags
// AtLeastGo110 reports whether the Go toolchain is at least Go 1.10.
const AtLeastGo110 = true

View File

@ -2,25 +2,34 @@
// Use of this source code is governed by a BSD-style // Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file. // license that can be found in the LICENSE.md file.
// Package function identifies function types. // Package function provides functionality for identifying function types.
package function package function
import "reflect" import (
"reflect"
"regexp"
"runtime"
"strings"
)
type funcType int type funcType int
const ( const (
_ funcType = iota _ funcType = iota
tbFunc // func(T) bool
ttbFunc // func(T, T) bool ttbFunc // func(T, T) bool
trbFunc // func(T, R) bool
tibFunc // func(T, I) bool tibFunc // func(T, I) bool
trFunc // func(T) R trFunc // func(T) R
Equal = ttbFunc // func(T, T) bool Equal = ttbFunc // func(T, T) bool
EqualAssignable = tibFunc // func(T, I) bool; encapsulates func(T, T) bool EqualAssignable = tibFunc // func(T, I) bool; encapsulates func(T, T) bool
Transformer = trFunc // func(T) R Transformer = trFunc // func(T) R
ValueFilter = ttbFunc // func(T, T) bool ValueFilter = ttbFunc // func(T, T) bool
Less = ttbFunc // func(T, T) bool Less = ttbFunc // func(T, T) bool
ValuePredicate = tbFunc // func(T) bool
KeyValuePredicate = trbFunc // func(T, R) bool
) )
var boolType = reflect.TypeOf(true) var boolType = reflect.TypeOf(true)
@ -32,10 +41,18 @@ func IsType(t reflect.Type, ft funcType) bool {
} }
ni, no := t.NumIn(), t.NumOut() ni, no := t.NumIn(), t.NumOut()
switch ft { switch ft {
case tbFunc: // func(T) bool
if ni == 1 && no == 1 && t.Out(0) == boolType {
return true
}
case ttbFunc: // func(T, T) bool case ttbFunc: // func(T, T) bool
if ni == 2 && no == 1 && t.In(0) == t.In(1) && t.Out(0) == boolType { if ni == 2 && no == 1 && t.In(0) == t.In(1) && t.Out(0) == boolType {
return true return true
} }
case trbFunc: // func(T, R) bool
if ni == 2 && no == 1 && t.Out(0) == boolType {
return true
}
case tibFunc: // func(T, I) bool case tibFunc: // func(T, I) bool
if ni == 2 && no == 1 && t.In(0).AssignableTo(t.In(1)) && t.Out(0) == boolType { if ni == 2 && no == 1 && t.In(0).AssignableTo(t.In(1)) && t.Out(0) == boolType {
return true return true
@ -47,3 +64,36 @@ func IsType(t reflect.Type, ft funcType) bool {
} }
return false return false
} }
var lastIdentRx = regexp.MustCompile(`[_\p{L}][_\p{L}\p{N}]*$`)
// NameOf returns the name of the function value.
func NameOf(v reflect.Value) string {
fnc := runtime.FuncForPC(v.Pointer())
if fnc == nil {
return "<unknown>"
}
fullName := fnc.Name() // e.g., "long/path/name/mypkg.(*MyType).(long/path/name/mypkg.myMethod)-fm"
// Method closures have a "-fm" suffix.
fullName = strings.TrimSuffix(fullName, "-fm")
var name string
for len(fullName) > 0 {
inParen := strings.HasSuffix(fullName, ")")
fullName = strings.TrimSuffix(fullName, ")")
s := lastIdentRx.FindString(fullName)
if s == "" {
break
}
name = s + "." + name
fullName = strings.TrimSuffix(fullName, s)
if i := strings.LastIndexByte(fullName, '('); inParen && i >= 0 {
fullName = fullName[:i]
}
fullName = strings.TrimSuffix(fullName, ".")
}
return strings.TrimSuffix(name, ".")
}

View File

@ -1,277 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// Package value provides functionality for reflect.Value types.
package value
import (
"fmt"
"reflect"
"strconv"
"strings"
"unicode"
)
var stringerIface = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
// Format formats the value v as a string.
//
// This is similar to fmt.Sprintf("%+v", v) except this:
// * Prints the type unless it can be elided
// * Avoids printing struct fields that are zero
// * Prints a nil-slice as being nil, not empty
// * Prints map entries in deterministic order
func Format(v reflect.Value, conf FormatConfig) string {
conf.printType = true
conf.followPointers = true
conf.realPointers = true
return formatAny(v, conf, nil)
}
type FormatConfig struct {
UseStringer bool // Should the String method be used if available?
printType bool // Should we print the type before the value?
PrintPrimitiveType bool // Should we print the type of primitives?
followPointers bool // Should we recursively follow pointers?
realPointers bool // Should we print the real address of pointers?
}
func formatAny(v reflect.Value, conf FormatConfig, visited map[uintptr]bool) string {
// TODO: Should this be a multi-line printout in certain situations?
if !v.IsValid() {
return "<non-existent>"
}
if conf.UseStringer && v.Type().Implements(stringerIface) && v.CanInterface() {
if (v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface) && v.IsNil() {
return "<nil>"
}
const stringerPrefix = "s" // Indicates that the String method was used
s := v.Interface().(fmt.Stringer).String()
return stringerPrefix + formatString(s)
}
switch v.Kind() {
case reflect.Bool:
return formatPrimitive(v.Type(), v.Bool(), conf)
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return formatPrimitive(v.Type(), v.Int(), conf)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
if v.Type().PkgPath() == "" || v.Kind() == reflect.Uintptr {
// Unnamed uints are usually bytes or words, so use hexadecimal.
return formatPrimitive(v.Type(), formatHex(v.Uint()), conf)
}
return formatPrimitive(v.Type(), v.Uint(), conf)
case reflect.Float32, reflect.Float64:
return formatPrimitive(v.Type(), v.Float(), conf)
case reflect.Complex64, reflect.Complex128:
return formatPrimitive(v.Type(), v.Complex(), conf)
case reflect.String:
return formatPrimitive(v.Type(), formatString(v.String()), conf)
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
return formatPointer(v, conf)
case reflect.Ptr:
if v.IsNil() {
if conf.printType {
return fmt.Sprintf("(%v)(nil)", v.Type())
}
return "<nil>"
}
if visited[v.Pointer()] || !conf.followPointers {
return formatPointer(v, conf)
}
visited = insertPointer(visited, v.Pointer())
return "&" + formatAny(v.Elem(), conf, visited)
case reflect.Interface:
if v.IsNil() {
if conf.printType {
return fmt.Sprintf("%v(nil)", v.Type())
}
return "<nil>"
}
return formatAny(v.Elem(), conf, visited)
case reflect.Slice:
if v.IsNil() {
if conf.printType {
return fmt.Sprintf("%v(nil)", v.Type())
}
return "<nil>"
}
if visited[v.Pointer()] {
return formatPointer(v, conf)
}
visited = insertPointer(visited, v.Pointer())
fallthrough
case reflect.Array:
var ss []string
subConf := conf
subConf.printType = v.Type().Elem().Kind() == reflect.Interface
for i := 0; i < v.Len(); i++ {
s := formatAny(v.Index(i), subConf, visited)
ss = append(ss, s)
}
s := fmt.Sprintf("{%s}", strings.Join(ss, ", "))
if conf.printType {
return v.Type().String() + s
}
return s
case reflect.Map:
if v.IsNil() {
if conf.printType {
return fmt.Sprintf("%v(nil)", v.Type())
}
return "<nil>"
}
if visited[v.Pointer()] {
return formatPointer(v, conf)
}
visited = insertPointer(visited, v.Pointer())
var ss []string
keyConf, valConf := conf, conf
keyConf.printType = v.Type().Key().Kind() == reflect.Interface
keyConf.followPointers = false
valConf.printType = v.Type().Elem().Kind() == reflect.Interface
for _, k := range SortKeys(v.MapKeys()) {
sk := formatAny(k, keyConf, visited)
sv := formatAny(v.MapIndex(k), valConf, visited)
ss = append(ss, fmt.Sprintf("%s: %s", sk, sv))
}
s := fmt.Sprintf("{%s}", strings.Join(ss, ", "))
if conf.printType {
return v.Type().String() + s
}
return s
case reflect.Struct:
var ss []string
subConf := conf
subConf.printType = true
for i := 0; i < v.NumField(); i++ {
vv := v.Field(i)
if isZero(vv) {
continue // Elide zero value fields
}
name := v.Type().Field(i).Name
subConf.UseStringer = conf.UseStringer
s := formatAny(vv, subConf, visited)
ss = append(ss, fmt.Sprintf("%s: %s", name, s))
}
s := fmt.Sprintf("{%s}", strings.Join(ss, ", "))
if conf.printType {
return v.Type().String() + s
}
return s
default:
panic(fmt.Sprintf("%v kind not handled", v.Kind()))
}
}
func formatString(s string) string {
// Use quoted string if it the same length as a raw string literal.
// Otherwise, attempt to use the raw string form.
qs := strconv.Quote(s)
if len(qs) == 1+len(s)+1 {
return qs
}
// Disallow newlines to ensure output is a single line.
// Only allow printable runes for readability purposes.
rawInvalid := func(r rune) bool {
return r == '`' || r == '\n' || !unicode.IsPrint(r)
}
if strings.IndexFunc(s, rawInvalid) < 0 {
return "`" + s + "`"
}
return qs
}
func formatPrimitive(t reflect.Type, v interface{}, conf FormatConfig) string {
if conf.printType && (conf.PrintPrimitiveType || t.PkgPath() != "") {
return fmt.Sprintf("%v(%v)", t, v)
}
return fmt.Sprintf("%v", v)
}
func formatPointer(v reflect.Value, conf FormatConfig) string {
p := v.Pointer()
if !conf.realPointers {
p = 0 // For deterministic printing purposes
}
s := formatHex(uint64(p))
if conf.printType {
return fmt.Sprintf("(%v)(%s)", v.Type(), s)
}
return s
}
func formatHex(u uint64) string {
var f string
switch {
case u <= 0xff:
f = "0x%02x"
case u <= 0xffff:
f = "0x%04x"
case u <= 0xffffff:
f = "0x%06x"
case u <= 0xffffffff:
f = "0x%08x"
case u <= 0xffffffffff:
f = "0x%010x"
case u <= 0xffffffffffff:
f = "0x%012x"
case u <= 0xffffffffffffff:
f = "0x%014x"
case u <= 0xffffffffffffffff:
f = "0x%016x"
}
return fmt.Sprintf(f, u)
}
// insertPointer insert p into m, allocating m if necessary.
func insertPointer(m map[uintptr]bool, p uintptr) map[uintptr]bool {
if m == nil {
m = make(map[uintptr]bool)
}
m[p] = true
return m
}
// isZero reports whether v is the zero value.
// This does not rely on Interface and so can be used on unexported fields.
func isZero(v reflect.Value) bool {
switch v.Kind() {
case reflect.Bool:
return v.Bool() == false
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return v.Int() == 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return v.Uint() == 0
case reflect.Float32, reflect.Float64:
return v.Float() == 0
case reflect.Complex64, reflect.Complex128:
return v.Complex() == 0
case reflect.String:
return v.String() == ""
case reflect.UnsafePointer:
return v.Pointer() == 0
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr, reflect.Map, reflect.Slice:
return v.IsNil()
case reflect.Array:
for i := 0; i < v.Len(); i++ {
if !isZero(v.Index(i)) {
return false
}
}
return true
case reflect.Struct:
for i := 0; i < v.NumField(); i++ {
if !isZero(v.Field(i)) {
return false
}
}
return true
}
return false
}

View File

@ -0,0 +1,23 @@
// Copyright 2018, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build purego
package value
import "reflect"
// Pointer is an opaque typed pointer and is guaranteed to be comparable.
type Pointer struct {
p uintptr
t reflect.Type
}
// PointerOf returns a Pointer from v, which must be a
// reflect.Ptr, reflect.Slice, or reflect.Map.
func PointerOf(v reflect.Value) Pointer {
// NOTE: Storing a pointer as an uintptr is technically incorrect as it
// assumes that the GC implementation does not use a moving collector.
return Pointer{v.Pointer(), v.Type()}
}

View File

@ -0,0 +1,26 @@
// Copyright 2018, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build !purego
package value
import (
"reflect"
"unsafe"
)
// Pointer is an opaque typed pointer and is guaranteed to be comparable.
type Pointer struct {
p unsafe.Pointer
t reflect.Type
}
// PointerOf returns a Pointer from v, which must be a
// reflect.Ptr, reflect.Slice, or reflect.Map.
func PointerOf(v reflect.Value) Pointer {
// The proper representation of a pointer is unsafe.Pointer,
// which is necessary if the GC ever uses a moving collector.
return Pointer{unsafe.Pointer(v.Pointer()), v.Type()}
}

View File

@ -19,7 +19,7 @@ func SortKeys(vs []reflect.Value) []reflect.Value {
} }
// Sort the map keys. // Sort the map keys.
sort.Sort(valueSorter(vs)) sort.Slice(vs, func(i, j int) bool { return isLess(vs[i], vs[j]) })
// Deduplicate keys (fails for NaNs). // Deduplicate keys (fails for NaNs).
vs2 := vs[:1] vs2 := vs[:1]
@ -31,13 +31,6 @@ func SortKeys(vs []reflect.Value) []reflect.Value {
return vs2 return vs2
} }
// TODO: Use sort.Slice once Google AppEngine is on Go1.8 or above.
type valueSorter []reflect.Value
func (vs valueSorter) Len() int { return len(vs) }
func (vs valueSorter) Less(i, j int) bool { return isLess(vs[i], vs[j]) }
func (vs valueSorter) Swap(i, j int) { vs[i], vs[j] = vs[j], vs[i] }
// isLess is a generic function for sorting arbitrary map keys. // isLess is a generic function for sorting arbitrary map keys.
// The inputs must be of the same type and must be comparable. // The inputs must be of the same type and must be comparable.
func isLess(x, y reflect.Value) bool { func isLess(x, y reflect.Value) bool {

View File

@ -0,0 +1,45 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package value
import "reflect"
// IsZero reports whether v is the zero value.
// This does not rely on Interface and so can be used on unexported fields.
func IsZero(v reflect.Value) bool {
switch v.Kind() {
case reflect.Bool:
return v.Bool() == false
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return v.Int() == 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return v.Uint() == 0
case reflect.Float32, reflect.Float64:
return v.Float() == 0
case reflect.Complex64, reflect.Complex128:
return v.Complex() == 0
case reflect.String:
return v.String() == ""
case reflect.UnsafePointer:
return v.Pointer() == 0
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr, reflect.Map, reflect.Slice:
return v.IsNil()
case reflect.Array:
for i := 0; i < v.Len(); i++ {
if !IsZero(v.Index(i)) {
return false
}
}
return true
case reflect.Struct:
for i := 0; i < v.NumField(); i++ {
if !IsZero(v.Field(i)) {
return false
}
}
return true
}
return false
}

View File

@ -7,7 +7,7 @@ package cmp
import ( import (
"fmt" "fmt"
"reflect" "reflect"
"runtime" "regexp"
"strings" "strings"
"github.com/google/go-cmp/cmp/internal/function" "github.com/google/go-cmp/cmp/internal/function"
@ -29,11 +29,11 @@ type Option interface {
// An Options is returned only if multiple comparers or transformers // An Options is returned only if multiple comparers or transformers
// can apply simultaneously and will only contain values of those types // can apply simultaneously and will only contain values of those types
// or sub-Options containing values of those types. // or sub-Options containing values of those types.
filter(s *state, vx, vy reflect.Value, t reflect.Type) applicableOption filter(s *state, t reflect.Type, vx, vy reflect.Value) applicableOption
} }
// applicableOption represents the following types: // applicableOption represents the following types:
// Fundamental: ignore | invalid | *comparer | *transformer // Fundamental: ignore | validator | *comparer | *transformer
// Grouping: Options // Grouping: Options
type applicableOption interface { type applicableOption interface {
Option Option
@ -43,7 +43,7 @@ type applicableOption interface {
} }
// coreOption represents the following types: // coreOption represents the following types:
// Fundamental: ignore | invalid | *comparer | *transformer // Fundamental: ignore | validator | *comparer | *transformer
// Filters: *pathFilter | *valuesFilter // Filters: *pathFilter | *valuesFilter
type coreOption interface { type coreOption interface {
Option Option
@ -63,19 +63,19 @@ func (core) isCore() {}
// on all individual options held within. // on all individual options held within.
type Options []Option type Options []Option
func (opts Options) filter(s *state, vx, vy reflect.Value, t reflect.Type) (out applicableOption) { func (opts Options) filter(s *state, t reflect.Type, vx, vy reflect.Value) (out applicableOption) {
for _, opt := range opts { for _, opt := range opts {
switch opt := opt.filter(s, vx, vy, t); opt.(type) { switch opt := opt.filter(s, t, vx, vy); opt.(type) {
case ignore: case ignore:
return ignore{} // Only ignore can short-circuit evaluation return ignore{} // Only ignore can short-circuit evaluation
case invalid: case validator:
out = invalid{} // Takes precedence over comparer or transformer out = validator{} // Takes precedence over comparer or transformer
case *comparer, *transformer, Options: case *comparer, *transformer, Options:
switch out.(type) { switch out.(type) {
case nil: case nil:
out = opt out = opt
case invalid: case validator:
// Keep invalid // Keep validator
case *comparer, *transformer, Options: case *comparer, *transformer, Options:
out = Options{out, opt} // Conflicting comparers or transformers out = Options{out, opt} // Conflicting comparers or transformers
} }
@ -106,6 +106,11 @@ func (opts Options) String() string {
// FilterPath returns a new Option where opt is only evaluated if filter f // FilterPath returns a new Option where opt is only evaluated if filter f
// returns true for the current Path in the value tree. // returns true for the current Path in the value tree.
// //
// This filter is called even if a slice element or map entry is missing and
// provides an opportunity to ignore such cases. The filter function must be
// symmetric such that the filter result is identical regardless of whether the
// missing value is from x or y.
//
// The option passed in may be an Ignore, Transformer, Comparer, Options, or // The option passed in may be an Ignore, Transformer, Comparer, Options, or
// a previously filtered Option. // a previously filtered Option.
func FilterPath(f func(Path) bool, opt Option) Option { func FilterPath(f func(Path) bool, opt Option) Option {
@ -124,22 +129,22 @@ type pathFilter struct {
opt Option opt Option
} }
func (f pathFilter) filter(s *state, vx, vy reflect.Value, t reflect.Type) applicableOption { func (f pathFilter) filter(s *state, t reflect.Type, vx, vy reflect.Value) applicableOption {
if f.fnc(s.curPath) { if f.fnc(s.curPath) {
return f.opt.filter(s, vx, vy, t) return f.opt.filter(s, t, vx, vy)
} }
return nil return nil
} }
func (f pathFilter) String() string { func (f pathFilter) String() string {
fn := getFuncName(reflect.ValueOf(f.fnc).Pointer()) return fmt.Sprintf("FilterPath(%s, %v)", function.NameOf(reflect.ValueOf(f.fnc)), f.opt)
return fmt.Sprintf("FilterPath(%s, %v)", fn, f.opt)
} }
// FilterValues returns a new Option where opt is only evaluated if filter f, // FilterValues returns a new Option where opt is only evaluated if filter f,
// which is a function of the form "func(T, T) bool", returns true for the // which is a function of the form "func(T, T) bool", returns true for the
// current pair of values being compared. If the type of the values is not // current pair of values being compared. If either value is invalid or
// assignable to T, then this filter implicitly returns false. // the type of the values is not assignable to T, then this filter implicitly
// returns false.
// //
// The filter function must be // The filter function must be
// symmetric (i.e., agnostic to the order of the inputs) and // symmetric (i.e., agnostic to the order of the inputs) and
@ -171,19 +176,18 @@ type valuesFilter struct {
opt Option opt Option
} }
func (f valuesFilter) filter(s *state, vx, vy reflect.Value, t reflect.Type) applicableOption { func (f valuesFilter) filter(s *state, t reflect.Type, vx, vy reflect.Value) applicableOption {
if !vx.IsValid() || !vy.IsValid() { if !vx.IsValid() || !vx.CanInterface() || !vy.IsValid() || !vy.CanInterface() {
return invalid{} return nil
} }
if (f.typ == nil || t.AssignableTo(f.typ)) && s.callTTBFunc(f.fnc, vx, vy) { if (f.typ == nil || t.AssignableTo(f.typ)) && s.callTTBFunc(f.fnc, vx, vy) {
return f.opt.filter(s, vx, vy, t) return f.opt.filter(s, t, vx, vy)
} }
return nil return nil
} }
func (f valuesFilter) String() string { func (f valuesFilter) String() string {
fn := getFuncName(f.fnc.Pointer()) return fmt.Sprintf("FilterValues(%s, %v)", function.NameOf(f.fnc), f.opt)
return fmt.Sprintf("FilterValues(%s, %v)", fn, f.opt)
} }
// Ignore is an Option that causes all comparisons to be ignored. // Ignore is an Option that causes all comparisons to be ignored.
@ -194,19 +198,44 @@ func Ignore() Option { return ignore{} }
type ignore struct{ core } type ignore struct{ core }
func (ignore) isFiltered() bool { return false } func (ignore) isFiltered() bool { return false }
func (ignore) filter(_ *state, _, _ reflect.Value, _ reflect.Type) applicableOption { return ignore{} } func (ignore) filter(_ *state, _ reflect.Type, _, _ reflect.Value) applicableOption { return ignore{} }
func (ignore) apply(_ *state, _, _ reflect.Value) { return } func (ignore) apply(s *state, _, _ reflect.Value) { s.report(true, reportByIgnore) }
func (ignore) String() string { return "Ignore()" } func (ignore) String() string { return "Ignore()" }
// invalid is a sentinel Option type to indicate that some options could not // validator is a sentinel Option type to indicate that some options could not
// be evaluated due to unexported fields. // be evaluated due to unexported fields, missing slice elements, or
type invalid struct{ core } // missing map entries. Both values are validator only for unexported fields.
type validator struct{ core }
func (invalid) filter(_ *state, _, _ reflect.Value, _ reflect.Type) applicableOption { return invalid{} } func (validator) filter(_ *state, _ reflect.Type, vx, vy reflect.Value) applicableOption {
func (invalid) apply(s *state, _, _ reflect.Value) { if !vx.IsValid() || !vy.IsValid() {
const help = "consider using AllowUnexported or cmpopts.IgnoreUnexported" return validator{}
panic(fmt.Sprintf("cannot handle unexported field: %#v\n%s", s.curPath, help)) }
if !vx.CanInterface() || !vy.CanInterface() {
return validator{}
}
return nil
} }
func (validator) apply(s *state, vx, vy reflect.Value) {
// Implies missing slice element or map entry.
if !vx.IsValid() || !vy.IsValid() {
s.report(vx.IsValid() == vy.IsValid(), 0)
return
}
// Unable to Interface implies unexported field without visibility access.
if !vx.CanInterface() || !vy.CanInterface() {
const help = "consider using a custom Comparer; if you control the implementation of type, you can also consider AllowUnexported or cmpopts.IgnoreUnexported"
panic(fmt.Sprintf("cannot handle unexported field: %#v\n%s", s.curPath, help))
}
panic("not reachable")
}
// identRx represents a valid identifier according to the Go specification.
const identRx = `[_\p{L}][_\p{L}\p{N}]*`
var identsRx = regexp.MustCompile(`^` + identRx + `(\.` + identRx + `)*$`)
// Transformer returns an Option that applies a transformation function that // Transformer returns an Option that applies a transformation function that
// converts values of a certain type into that of another. // converts values of a certain type into that of another.
@ -220,18 +249,25 @@ func (invalid) apply(s *state, _, _ reflect.Value) {
// input and output types are the same), an implicit filter is added such that // input and output types are the same), an implicit filter is added such that
// a transformer is applicable only if that exact transformer is not already // a transformer is applicable only if that exact transformer is not already
// in the tail of the Path since the last non-Transform step. // in the tail of the Path since the last non-Transform step.
// For situations where the implicit filter is still insufficient,
// consider using cmpopts.AcyclicTransformer, which adds a filter
// to prevent the transformer from being recursively applied upon itself.
// //
// The name is a user provided label that is used as the Transform.Name in the // The name is a user provided label that is used as the Transform.Name in the
// transformation PathStep. If empty, an arbitrary name is used. // transformation PathStep (and eventually shown in the Diff output).
// The name must be a valid identifier or qualified identifier in Go syntax.
// If empty, an arbitrary name is used.
func Transformer(name string, f interface{}) Option { func Transformer(name string, f interface{}) Option {
v := reflect.ValueOf(f) v := reflect.ValueOf(f)
if !function.IsType(v.Type(), function.Transformer) || v.IsNil() { if !function.IsType(v.Type(), function.Transformer) || v.IsNil() {
panic(fmt.Sprintf("invalid transformer function: %T", f)) panic(fmt.Sprintf("invalid transformer function: %T", f))
} }
if name == "" { if name == "" {
name = "λ" // Lambda-symbol as place-holder for anonymous transformer name = function.NameOf(v)
} if !identsRx.MatchString(name) {
if !isValid(name) { name = "λ" // Lambda-symbol as placeholder name
}
} else if !identsRx.MatchString(name) {
panic(fmt.Sprintf("invalid name: %q", name)) panic(fmt.Sprintf("invalid name: %q", name))
} }
tr := &transformer{name: name, fnc: reflect.ValueOf(f)} tr := &transformer{name: name, fnc: reflect.ValueOf(f)}
@ -250,9 +286,9 @@ type transformer struct {
func (tr *transformer) isFiltered() bool { return tr.typ != nil } func (tr *transformer) isFiltered() bool { return tr.typ != nil }
func (tr *transformer) filter(s *state, _, _ reflect.Value, t reflect.Type) applicableOption { func (tr *transformer) filter(s *state, t reflect.Type, _, _ reflect.Value) applicableOption {
for i := len(s.curPath) - 1; i >= 0; i-- { for i := len(s.curPath) - 1; i >= 0; i-- {
if t, ok := s.curPath[i].(*transform); !ok { if t, ok := s.curPath[i].(Transform); !ok {
break // Hit most recent non-Transform step break // Hit most recent non-Transform step
} else if tr == t.trans { } else if tr == t.trans {
return nil // Cannot directly use same Transform return nil // Cannot directly use same Transform
@ -265,18 +301,15 @@ func (tr *transformer) filter(s *state, _, _ reflect.Value, t reflect.Type) appl
} }
func (tr *transformer) apply(s *state, vx, vy reflect.Value) { func (tr *transformer) apply(s *state, vx, vy reflect.Value) {
// Update path before calling the Transformer so that dynamic checks step := Transform{&transform{pathStep{typ: tr.fnc.Type().Out(0)}, tr}}
// will use the updated path. vvx := s.callTRFunc(tr.fnc, vx, step)
s.curPath.push(&transform{pathStep{tr.fnc.Type().Out(0)}, tr}) vvy := s.callTRFunc(tr.fnc, vy, step)
defer s.curPath.pop() step.vx, step.vy = vvx, vvy
s.compareAny(step)
vx = s.callTRFunc(tr.fnc, vx)
vy = s.callTRFunc(tr.fnc, vy)
s.compareAny(vx, vy)
} }
func (tr transformer) String() string { func (tr transformer) String() string {
return fmt.Sprintf("Transformer(%s, %s)", tr.name, getFuncName(tr.fnc.Pointer())) return fmt.Sprintf("Transformer(%s, %s)", tr.name, function.NameOf(tr.fnc))
} }
// Comparer returns an Option that determines whether two values are equal // Comparer returns an Option that determines whether two values are equal
@ -311,7 +344,7 @@ type comparer struct {
func (cm *comparer) isFiltered() bool { return cm.typ != nil } func (cm *comparer) isFiltered() bool { return cm.typ != nil }
func (cm *comparer) filter(_ *state, _, _ reflect.Value, t reflect.Type) applicableOption { func (cm *comparer) filter(_ *state, t reflect.Type, _, _ reflect.Value) applicableOption {
if cm.typ == nil || t.AssignableTo(cm.typ) { if cm.typ == nil || t.AssignableTo(cm.typ) {
return cm return cm
} }
@ -320,11 +353,11 @@ func (cm *comparer) filter(_ *state, _, _ reflect.Value, t reflect.Type) applica
func (cm *comparer) apply(s *state, vx, vy reflect.Value) { func (cm *comparer) apply(s *state, vx, vy reflect.Value) {
eq := s.callTTBFunc(cm.fnc, vx, vy) eq := s.callTTBFunc(cm.fnc, vx, vy)
s.report(eq, vx, vy) s.report(eq, reportByFunc)
} }
func (cm comparer) String() string { func (cm comparer) String() string {
return fmt.Sprintf("Comparer(%s)", getFuncName(cm.fnc.Pointer())) return fmt.Sprintf("Comparer(%s)", function.NameOf(cm.fnc))
} }
// AllowUnexported returns an Option that forcibly allows operations on // AllowUnexported returns an Option that forcibly allows operations on
@ -338,7 +371,7 @@ func (cm comparer) String() string {
// defined in an internal package where the semantic meaning of an unexported // defined in an internal package where the semantic meaning of an unexported
// field is in the control of the user. // field is in the control of the user.
// //
// For some cases, a custom Comparer should be used instead that defines // In many cases, a custom Comparer should be used instead that defines
// equality as a function of the public API of a type rather than the underlying // equality as a function of the public API of a type rather than the underlying
// unexported implementation. // unexported implementation.
// //
@ -370,27 +403,92 @@ func AllowUnexported(types ...interface{}) Option {
type visibleStructs map[reflect.Type]bool type visibleStructs map[reflect.Type]bool
func (visibleStructs) filter(_ *state, _, _ reflect.Value, _ reflect.Type) applicableOption { func (visibleStructs) filter(_ *state, _ reflect.Type, _, _ reflect.Value) applicableOption {
panic("not implemented") panic("not implemented")
} }
// reporter is an Option that configures how differences are reported. // Result represents the comparison result for a single node and
type reporter interface { // is provided by cmp when calling Result (see Reporter).
// TODO: Not exported yet. type Result struct {
_ [0]func() // Make Result incomparable
flags resultFlags
}
// Equal reports whether the node was determined to be equal or not.
// As a special case, ignored nodes are considered equal.
func (r Result) Equal() bool {
return r.flags&(reportEqual|reportByIgnore) != 0
}
// ByIgnore reports whether the node is equal because it was ignored.
// This never reports true if Equal reports false.
func (r Result) ByIgnore() bool {
return r.flags&reportByIgnore != 0
}
// ByMethod reports whether the Equal method determined equality.
func (r Result) ByMethod() bool {
return r.flags&reportByMethod != 0
}
// ByFunc reports whether a Comparer function determined equality.
func (r Result) ByFunc() bool {
return r.flags&reportByFunc != 0
}
type resultFlags uint
const (
_ resultFlags = (1 << iota) / 2
reportEqual
reportUnequal
reportByIgnore
reportByMethod
reportByFunc
)
// Reporter is an Option that can be passed to Equal. When Equal traverses
// the value trees, it calls PushStep as it descends into each node in the
// tree and PopStep as it ascend out of the node. The leaves of the tree are
// either compared (determined to be equal or not equal) or ignored and reported
// as such by calling the Report method.
func Reporter(r interface {
// PushStep is called when a tree-traversal operation is performed.
// The PathStep itself is only valid until the step is popped.
// The PathStep.Values are valid for the duration of the entire traversal
// and must not be mutated.
// //
// Perhaps add PushStep and PopStep and change Report to only accept // Equal always calls PushStep at the start to provide an operation-less
// a PathStep instead of the full-path? Adding a PushStep and PopStep makes // PathStep used to report the root values.
// it clear that we are traversing the value tree in a depth-first-search //
// manner, which has an effect on how values are printed. // Within a slice, the exact set of inserted, removed, or modified elements
// is unspecified and may change in future implementations.
// The entries of a map are iterated through in an unspecified order.
PushStep(PathStep)
Option // Report is called exactly once on leaf nodes to report whether the
// comparison identified the node as equal, unequal, or ignored.
// A leaf node is one that is immediately preceded by and followed by
// a pair of PushStep and PopStep calls.
Report(Result)
// Report is called for every comparison made and will be provided with // PopStep ascends back up the value tree.
// the two values being compared, the equality result, and the // There is always a matching pop call for every push call.
// current path in the value tree. It is possible for x or y to be an PopStep()
// invalid reflect.Value if one of the values is non-existent; }) Option {
// which is possible with maps and slices. return reporter{r}
Report(x, y reflect.Value, eq bool, p Path) }
type reporter struct{ reporterIface }
type reporterIface interface {
PushStep(PathStep)
Report(Result)
PopStep()
}
func (reporter) filter(_ *state, _ reflect.Type, _, _ reflect.Value) applicableOption {
panic("not implemented")
} }
// normalizeOption normalizes the input options such that all Options groups // normalizeOption normalizes the input options such that all Options groups
@ -424,30 +522,3 @@ func flattenOptions(dst, src Options) Options {
} }
return dst return dst
} }
// getFuncName returns a short function name from the pointer.
// The string parsing logic works up until Go1.9.
func getFuncName(p uintptr) string {
fnc := runtime.FuncForPC(p)
if fnc == nil {
return "<unknown>"
}
name := fnc.Name() // E.g., "long/path/name/mypkg.(mytype).(long/path/name/mypkg.myfunc)-fm"
if strings.HasSuffix(name, ")-fm") || strings.HasSuffix(name, ")·fm") {
// Strip the package name from method name.
name = strings.TrimSuffix(name, ")-fm")
name = strings.TrimSuffix(name, ")·fm")
if i := strings.LastIndexByte(name, '('); i >= 0 {
methodName := name[i+1:] // E.g., "long/path/name/mypkg.myfunc"
if j := strings.LastIndexByte(methodName, '.'); j >= 0 {
methodName = methodName[j+1:] // E.g., "myfunc"
}
name = name[:i] + methodName // E.g., "long/path/name/mypkg.(mytype)." + "myfunc"
}
}
if i := strings.LastIndexByte(name, '/'); i >= 0 {
// Strip the package name.
name = name[i+1:] // E.g., "mypkg.(mytype).myfunc"
}
return name
}

View File

@ -12,80 +12,52 @@ import (
"unicode/utf8" "unicode/utf8"
) )
type ( // Path is a list of PathSteps describing the sequence of operations to get
// Path is a list of PathSteps describing the sequence of operations to get // from some root type to the current position in the value tree.
// from some root type to the current position in the value tree. // The first Path element is always an operation-less PathStep that exists
// The first Path element is always an operation-less PathStep that exists // simply to identify the initial type.
// simply to identify the initial type. //
// When traversing structs with embedded structs, the embedded struct will
// always be accessed as a field before traversing the fields of the
// embedded struct themselves. That is, an exported field from the
// embedded struct will never be accessed directly from the parent struct.
type Path []PathStep
// PathStep is a union-type for specific operations to traverse
// a value's tree structure. Users of this package never need to implement
// these types as values of this type will be returned by this package.
//
// Implementations of this interface are
// StructField, SliceIndex, MapIndex, Indirect, TypeAssertion, and Transform.
type PathStep interface {
String() string
// Type is the resulting type after performing the path step.
Type() reflect.Type
// Values is the resulting values after performing the path step.
// The type of each valid value is guaranteed to be identical to Type.
// //
// When traversing structs with embedded structs, the embedded struct will // In some cases, one or both may be invalid or have restrictions:
// always be accessed as a field before traversing the fields of the // • For StructField, both are not interface-able if the current field
// embedded struct themselves. That is, an exported field from the // is unexported and the struct type is not explicitly permitted by
// embedded struct will never be accessed directly from the parent struct. // AllowUnexported to traverse unexported fields.
Path []PathStep // • For SliceIndex, one may be invalid if an element is missing from
// either the x or y slice.
// • For MapIndex, one may be invalid if an entry is missing from
// either the x or y map.
//
// The provided values must not be mutated.
Values() (vx, vy reflect.Value)
}
// PathStep is a union-type for specific operations to traverse var (
// a value's tree structure. Users of this package never need to implement _ PathStep = StructField{}
// these types as values of this type will be returned by this package. _ PathStep = SliceIndex{}
PathStep interface { _ PathStep = MapIndex{}
String() string _ PathStep = Indirect{}
Type() reflect.Type // Resulting type after performing the path step _ PathStep = TypeAssertion{}
isPathStep() _ PathStep = Transform{}
}
// SliceIndex is an index operation on a slice or array at some index Key.
SliceIndex interface {
PathStep
Key() int // May return -1 if in a split state
// SplitKeys returns the indexes for indexing into slices in the
// x and y values, respectively. These indexes may differ due to the
// insertion or removal of an element in one of the slices, causing
// all of the indexes to be shifted. If an index is -1, then that
// indicates that the element does not exist in the associated slice.
//
// Key is guaranteed to return -1 if and only if the indexes returned
// by SplitKeys are not the same. SplitKeys will never return -1 for
// both indexes.
SplitKeys() (x int, y int)
isSliceIndex()
}
// MapIndex is an index operation on a map at some index Key.
MapIndex interface {
PathStep
Key() reflect.Value
isMapIndex()
}
// TypeAssertion represents a type assertion on an interface.
TypeAssertion interface {
PathStep
isTypeAssertion()
}
// StructField represents a struct field access on a field called Name.
StructField interface {
PathStep
Name() string
Index() int
isStructField()
}
// Indirect represents pointer indirection on the parent type.
Indirect interface {
PathStep
isIndirect()
}
// Transform is a transformation from the parent type to the current type.
Transform interface {
PathStep
Name() string
Func() reflect.Value
// Option returns the originally constructed Transformer option.
// The == operator can be used to detect the exact option used.
Option() Option
isTransform()
}
) )
func (pa *Path) push(s PathStep) { func (pa *Path) push(s PathStep) {
@ -124,7 +96,7 @@ func (pa Path) Index(i int) PathStep {
func (pa Path) String() string { func (pa Path) String() string {
var ss []string var ss []string
for _, s := range pa { for _, s := range pa {
if _, ok := s.(*structField); ok { if _, ok := s.(StructField); ok {
ss = append(ss, s.String()) ss = append(ss, s.String())
} }
} }
@ -144,13 +116,13 @@ func (pa Path) GoString() string {
nextStep = pa[i+1] nextStep = pa[i+1]
} }
switch s := s.(type) { switch s := s.(type) {
case *indirect: case Indirect:
numIndirect++ numIndirect++
pPre, pPost := "(", ")" pPre, pPost := "(", ")"
switch nextStep.(type) { switch nextStep.(type) {
case *indirect: case Indirect:
continue // Next step is indirection, so let them batch up continue // Next step is indirection, so let them batch up
case *structField: case StructField:
numIndirect-- // Automatic indirection on struct fields numIndirect-- // Automatic indirection on struct fields
case nil: case nil:
pPre, pPost = "", "" // Last step; no need for parenthesis pPre, pPost = "", "" // Last step; no need for parenthesis
@ -161,19 +133,10 @@ func (pa Path) GoString() string {
} }
numIndirect = 0 numIndirect = 0
continue continue
case *transform: case Transform:
ssPre = append(ssPre, s.trans.name+"(") ssPre = append(ssPre, s.trans.name+"(")
ssPost = append(ssPost, ")") ssPost = append(ssPost, ")")
continue continue
case *typeAssertion:
// As a special-case, elide type assertions on anonymous types
// since they are typically generated dynamically and can be very
// verbose. For example, some transforms return interface{} because
// of Go's lack of generics, but typically take in and return the
// exact same concrete type.
if s.Type().PkgPath() == "" {
continue
}
} }
ssPost = append(ssPost, s.String()) ssPost = append(ssPost, s.String())
} }
@ -183,44 +146,13 @@ func (pa Path) GoString() string {
return strings.Join(ssPre, "") + strings.Join(ssPost, "") return strings.Join(ssPre, "") + strings.Join(ssPost, "")
} }
type ( type pathStep struct {
pathStep struct { typ reflect.Type
typ reflect.Type vx, vy reflect.Value
} }
sliceIndex struct { func (ps pathStep) Type() reflect.Type { return ps.typ }
pathStep func (ps pathStep) Values() (vx, vy reflect.Value) { return ps.vx, ps.vy }
xkey, ykey int
}
mapIndex struct {
pathStep
key reflect.Value
}
typeAssertion struct {
pathStep
}
structField struct {
pathStep
name string
idx int
// These fields are used for forcibly accessing an unexported field.
// pvx, pvy, and field are only valid if unexported is true.
unexported bool
force bool // Forcibly allow visibility
pvx, pvy reflect.Value // Parent values
field reflect.StructField // Field information
}
indirect struct {
pathStep
}
transform struct {
pathStep
trans *transformer
}
)
func (ps pathStep) Type() reflect.Type { return ps.typ }
func (ps pathStep) String() string { func (ps pathStep) String() string {
if ps.typ == nil { if ps.typ == nil {
return "<nil>" return "<nil>"
@ -232,7 +164,54 @@ func (ps pathStep) String() string {
return fmt.Sprintf("{%s}", s) return fmt.Sprintf("{%s}", s)
} }
func (si sliceIndex) String() string { // StructField represents a struct field access on a field called Name.
type StructField struct{ *structField }
type structField struct {
pathStep
name string
idx int
// These fields are used for forcibly accessing an unexported field.
// pvx, pvy, and field are only valid if unexported is true.
unexported bool
mayForce bool // Forcibly allow visibility
pvx, pvy reflect.Value // Parent values
field reflect.StructField // Field information
}
func (sf StructField) Type() reflect.Type { return sf.typ }
func (sf StructField) Values() (vx, vy reflect.Value) {
if !sf.unexported {
return sf.vx, sf.vy // CanInterface reports true
}
// Forcibly obtain read-write access to an unexported struct field.
if sf.mayForce {
vx = retrieveUnexportedField(sf.pvx, sf.field)
vy = retrieveUnexportedField(sf.pvy, sf.field)
return vx, vy // CanInterface reports true
}
return sf.vx, sf.vy // CanInterface reports false
}
func (sf StructField) String() string { return fmt.Sprintf(".%s", sf.name) }
// Name is the field name.
func (sf StructField) Name() string { return sf.name }
// Index is the index of the field in the parent struct type.
// See reflect.Type.Field.
func (sf StructField) Index() int { return sf.idx }
// SliceIndex is an index operation on a slice or array at some index Key.
type SliceIndex struct{ *sliceIndex }
type sliceIndex struct {
pathStep
xkey, ykey int
}
func (si SliceIndex) Type() reflect.Type { return si.typ }
func (si SliceIndex) Values() (vx, vy reflect.Value) { return si.vx, si.vy }
func (si SliceIndex) String() string {
switch { switch {
case si.xkey == si.ykey: case si.xkey == si.ykey:
return fmt.Sprintf("[%d]", si.xkey) return fmt.Sprintf("[%d]", si.xkey)
@ -247,63 +226,83 @@ func (si sliceIndex) String() string {
return fmt.Sprintf("[%d->%d]", si.xkey, si.ykey) return fmt.Sprintf("[%d->%d]", si.xkey, si.ykey)
} }
} }
func (mi mapIndex) String() string { return fmt.Sprintf("[%#v]", mi.key) }
func (ta typeAssertion) String() string { return fmt.Sprintf(".(%v)", ta.typ) }
func (sf structField) String() string { return fmt.Sprintf(".%s", sf.name) }
func (in indirect) String() string { return "*" }
func (tf transform) String() string { return fmt.Sprintf("%s()", tf.trans.name) }
func (si sliceIndex) Key() int { // Key is the index key; it may return -1 if in a split state
func (si SliceIndex) Key() int {
if si.xkey != si.ykey { if si.xkey != si.ykey {
return -1 return -1
} }
return si.xkey return si.xkey
} }
func (si sliceIndex) SplitKeys() (x, y int) { return si.xkey, si.ykey }
func (mi mapIndex) Key() reflect.Value { return mi.key }
func (sf structField) Name() string { return sf.name }
func (sf structField) Index() int { return sf.idx }
func (tf transform) Name() string { return tf.trans.name }
func (tf transform) Func() reflect.Value { return tf.trans.fnc }
func (tf transform) Option() Option { return tf.trans }
func (pathStep) isPathStep() {} // SplitKeys are the indexes for indexing into slices in the
func (sliceIndex) isSliceIndex() {} // x and y values, respectively. These indexes may differ due to the
func (mapIndex) isMapIndex() {} // insertion or removal of an element in one of the slices, causing
func (typeAssertion) isTypeAssertion() {} // all of the indexes to be shifted. If an index is -1, then that
func (structField) isStructField() {} // indicates that the element does not exist in the associated slice.
func (indirect) isIndirect() {} //
func (transform) isTransform() {} // Key is guaranteed to return -1 if and only if the indexes returned
// by SplitKeys are not the same. SplitKeys will never return -1 for
// both indexes.
func (si SliceIndex) SplitKeys() (ix, iy int) { return si.xkey, si.ykey }
var ( // MapIndex is an index operation on a map at some index Key.
_ SliceIndex = sliceIndex{} type MapIndex struct{ *mapIndex }
_ MapIndex = mapIndex{} type mapIndex struct {
_ TypeAssertion = typeAssertion{} pathStep
_ StructField = structField{} key reflect.Value
_ Indirect = indirect{} }
_ Transform = transform{}
_ PathStep = sliceIndex{} func (mi MapIndex) Type() reflect.Type { return mi.typ }
_ PathStep = mapIndex{} func (mi MapIndex) Values() (vx, vy reflect.Value) { return mi.vx, mi.vy }
_ PathStep = typeAssertion{} func (mi MapIndex) String() string { return fmt.Sprintf("[%#v]", mi.key) }
_ PathStep = structField{}
_ PathStep = indirect{} // Key is the value of the map key.
_ PathStep = transform{} func (mi MapIndex) Key() reflect.Value { return mi.key }
)
// Indirect represents pointer indirection on the parent type.
type Indirect struct{ *indirect }
type indirect struct {
pathStep
}
func (in Indirect) Type() reflect.Type { return in.typ }
func (in Indirect) Values() (vx, vy reflect.Value) { return in.vx, in.vy }
func (in Indirect) String() string { return "*" }
// TypeAssertion represents a type assertion on an interface.
type TypeAssertion struct{ *typeAssertion }
type typeAssertion struct {
pathStep
}
func (ta TypeAssertion) Type() reflect.Type { return ta.typ }
func (ta TypeAssertion) Values() (vx, vy reflect.Value) { return ta.vx, ta.vy }
func (ta TypeAssertion) String() string { return fmt.Sprintf(".(%v)", ta.typ) }
// Transform is a transformation from the parent type to the current type.
type Transform struct{ *transform }
type transform struct {
pathStep
trans *transformer
}
func (tf Transform) Type() reflect.Type { return tf.typ }
func (tf Transform) Values() (vx, vy reflect.Value) { return tf.vx, tf.vy }
func (tf Transform) String() string { return fmt.Sprintf("%s()", tf.trans.name) }
// Name is the name of the Transformer.
func (tf Transform) Name() string { return tf.trans.name }
// Func is the function pointer to the transformer function.
func (tf Transform) Func() reflect.Value { return tf.trans.fnc }
// Option returns the originally constructed Transformer option.
// The == operator can be used to detect the exact option used.
func (tf Transform) Option() Option { return tf.trans }
// isExported reports whether the identifier is exported. // isExported reports whether the identifier is exported.
func isExported(id string) bool { func isExported(id string) bool {
r, _ := utf8.DecodeRuneInString(id) r, _ := utf8.DecodeRuneInString(id)
return unicode.IsUpper(r) return unicode.IsUpper(r)
} }
// isValid reports whether the identifier is valid.
// Empty and underscore-only strings are not valid.
func isValid(id string) bool {
ok := id != "" && id != "_"
for j, c := range id {
ok = ok && (j > 0 || !unicode.IsDigit(c))
ok = ok && (c == '_' || unicode.IsLetter(c) || unicode.IsDigit(c))
}
return ok
}

51
vendor/github.com/google/go-cmp/cmp/report.go generated vendored Normal file
View File

@ -0,0 +1,51 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
// defaultReporter implements the reporter interface.
//
// As Equal serially calls the PushStep, Report, and PopStep methods, the
// defaultReporter constructs a tree-based representation of the compared value
// and the result of each comparison (see valueNode).
//
// When the String method is called, the FormatDiff method transforms the
// valueNode tree into a textNode tree, which is a tree-based representation
// of the textual output (see textNode).
//
// Lastly, the textNode.String method produces the final report as a string.
type defaultReporter struct {
root *valueNode
curr *valueNode
}
func (r *defaultReporter) PushStep(ps PathStep) {
r.curr = r.curr.PushStep(ps)
if r.root == nil {
r.root = r.curr
}
}
func (r *defaultReporter) Report(rs Result) {
r.curr.Report(rs)
}
func (r *defaultReporter) PopStep() {
r.curr = r.curr.PopStep()
}
// String provides a full report of the differences detected as a structured
// literal in pseudo-Go syntax. String may only be called after the entire tree
// has been traversed.
func (r *defaultReporter) String() string {
assert(r.root != nil && r.curr == nil)
if r.root.NumDiff == 0 {
return ""
}
return formatOptions{}.FormatDiff(r.root).String()
}
func assert(ok bool) {
if !ok {
panic("assertion failure")
}
}

296
vendor/github.com/google/go-cmp/cmp/report_compare.go generated vendored Normal file
View File

@ -0,0 +1,296 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"fmt"
"reflect"
"github.com/google/go-cmp/cmp/internal/value"
)
// TODO: Enforce limits?
// * Enforce maximum number of records to print per node?
// * Enforce maximum size in bytes allowed?
// * As a heuristic, use less verbosity for equal nodes than unequal nodes.
// TODO: Enforce unique outputs?
// * Avoid Stringer methods if it results in same output?
// * Print pointer address if outputs still equal?
// numContextRecords is the number of surrounding equal records to print.
const numContextRecords = 2
type diffMode byte
const (
diffUnknown diffMode = 0
diffIdentical diffMode = ' '
diffRemoved diffMode = '-'
diffInserted diffMode = '+'
)
type typeMode int
const (
// emitType always prints the type.
emitType typeMode = iota
// elideType never prints the type.
elideType
// autoType prints the type only for composite kinds
// (i.e., structs, slices, arrays, and maps).
autoType
)
type formatOptions struct {
// DiffMode controls the output mode of FormatDiff.
//
// If diffUnknown, then produce a diff of the x and y values.
// If diffIdentical, then emit values as if they were equal.
// If diffRemoved, then only emit x values (ignoring y values).
// If diffInserted, then only emit y values (ignoring x values).
DiffMode diffMode
// TypeMode controls whether to print the type for the current node.
//
// As a general rule of thumb, we always print the type of the next node
// after an interface, and always elide the type of the next node after
// a slice or map node.
TypeMode typeMode
// formatValueOptions are options specific to printing reflect.Values.
formatValueOptions
}
func (opts formatOptions) WithDiffMode(d diffMode) formatOptions {
opts.DiffMode = d
return opts
}
func (opts formatOptions) WithTypeMode(t typeMode) formatOptions {
opts.TypeMode = t
return opts
}
// FormatDiff converts a valueNode tree into a textNode tree, where the later
// is a textual representation of the differences detected in the former.
func (opts formatOptions) FormatDiff(v *valueNode) textNode {
// Check whether we have specialized formatting for this node.
// This is not necessary, but helpful for producing more readable outputs.
if opts.CanFormatDiffSlice(v) {
return opts.FormatDiffSlice(v)
}
// For leaf nodes, format the value based on the reflect.Values alone.
if v.MaxDepth == 0 {
switch opts.DiffMode {
case diffUnknown, diffIdentical:
// Format Equal.
if v.NumDiff == 0 {
outx := opts.FormatValue(v.ValueX, visitedPointers{})
outy := opts.FormatValue(v.ValueY, visitedPointers{})
if v.NumIgnored > 0 && v.NumSame == 0 {
return textEllipsis
} else if outx.Len() < outy.Len() {
return outx
} else {
return outy
}
}
// Format unequal.
assert(opts.DiffMode == diffUnknown)
var list textList
outx := opts.WithTypeMode(elideType).FormatValue(v.ValueX, visitedPointers{})
outy := opts.WithTypeMode(elideType).FormatValue(v.ValueY, visitedPointers{})
if outx != nil {
list = append(list, textRecord{Diff: '-', Value: outx})
}
if outy != nil {
list = append(list, textRecord{Diff: '+', Value: outy})
}
return opts.WithTypeMode(emitType).FormatType(v.Type, list)
case diffRemoved:
return opts.FormatValue(v.ValueX, visitedPointers{})
case diffInserted:
return opts.FormatValue(v.ValueY, visitedPointers{})
default:
panic("invalid diff mode")
}
}
// Descend into the child value node.
if v.TransformerName != "" {
out := opts.WithTypeMode(emitType).FormatDiff(v.Value)
out = textWrap{"Inverse(" + v.TransformerName + ", ", out, ")"}
return opts.FormatType(v.Type, out)
} else {
switch k := v.Type.Kind(); k {
case reflect.Struct, reflect.Array, reflect.Slice, reflect.Map:
return opts.FormatType(v.Type, opts.formatDiffList(v.Records, k))
case reflect.Ptr:
return textWrap{"&", opts.FormatDiff(v.Value), ""}
case reflect.Interface:
return opts.WithTypeMode(emitType).FormatDiff(v.Value)
default:
panic(fmt.Sprintf("%v cannot have children", k))
}
}
}
func (opts formatOptions) formatDiffList(recs []reportRecord, k reflect.Kind) textNode {
// Derive record name based on the data structure kind.
var name string
var formatKey func(reflect.Value) string
switch k {
case reflect.Struct:
name = "field"
opts = opts.WithTypeMode(autoType)
formatKey = func(v reflect.Value) string { return v.String() }
case reflect.Slice, reflect.Array:
name = "element"
opts = opts.WithTypeMode(elideType)
formatKey = func(reflect.Value) string { return "" }
case reflect.Map:
name = "entry"
opts = opts.WithTypeMode(elideType)
formatKey = formatMapKey
}
// Handle unification.
switch opts.DiffMode {
case diffIdentical, diffRemoved, diffInserted:
var list textList
var deferredEllipsis bool // Add final "..." to indicate records were dropped
for _, r := range recs {
// Elide struct fields that are zero value.
if k == reflect.Struct {
var isZero bool
switch opts.DiffMode {
case diffIdentical:
isZero = value.IsZero(r.Value.ValueX) || value.IsZero(r.Value.ValueX)
case diffRemoved:
isZero = value.IsZero(r.Value.ValueX)
case diffInserted:
isZero = value.IsZero(r.Value.ValueY)
}
if isZero {
continue
}
}
// Elide ignored nodes.
if r.Value.NumIgnored > 0 && r.Value.NumSame+r.Value.NumDiff == 0 {
deferredEllipsis = !(k == reflect.Slice || k == reflect.Array)
if !deferredEllipsis {
list.AppendEllipsis(diffStats{})
}
continue
}
if out := opts.FormatDiff(r.Value); out != nil {
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
}
}
if deferredEllipsis {
list.AppendEllipsis(diffStats{})
}
return textWrap{"{", list, "}"}
case diffUnknown:
default:
panic("invalid diff mode")
}
// Handle differencing.
var list textList
groups := coalesceAdjacentRecords(name, recs)
for i, ds := range groups {
// Handle equal records.
if ds.NumDiff() == 0 {
// Compute the number of leading and trailing records to print.
var numLo, numHi int
numEqual := ds.NumIgnored + ds.NumIdentical
for numLo < numContextRecords && numLo+numHi < numEqual && i != 0 {
if r := recs[numLo].Value; r.NumIgnored > 0 && r.NumSame+r.NumDiff == 0 {
break
}
numLo++
}
for numHi < numContextRecords && numLo+numHi < numEqual && i != len(groups)-1 {
if r := recs[numEqual-numHi-1].Value; r.NumIgnored > 0 && r.NumSame+r.NumDiff == 0 {
break
}
numHi++
}
if numEqual-(numLo+numHi) == 1 && ds.NumIgnored == 0 {
numHi++ // Avoid pointless coalescing of a single equal record
}
// Format the equal values.
for _, r := range recs[:numLo] {
out := opts.WithDiffMode(diffIdentical).FormatDiff(r.Value)
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
}
if numEqual > numLo+numHi {
ds.NumIdentical -= numLo + numHi
list.AppendEllipsis(ds)
}
for _, r := range recs[numEqual-numHi : numEqual] {
out := opts.WithDiffMode(diffIdentical).FormatDiff(r.Value)
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
}
recs = recs[numEqual:]
continue
}
// Handle unequal records.
for _, r := range recs[:ds.NumDiff()] {
switch {
case opts.CanFormatDiffSlice(r.Value):
out := opts.FormatDiffSlice(r.Value)
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
case r.Value.NumChildren == r.Value.MaxDepth:
outx := opts.WithDiffMode(diffRemoved).FormatDiff(r.Value)
outy := opts.WithDiffMode(diffInserted).FormatDiff(r.Value)
if outx != nil {
list = append(list, textRecord{Diff: diffRemoved, Key: formatKey(r.Key), Value: outx})
}
if outy != nil {
list = append(list, textRecord{Diff: diffInserted, Key: formatKey(r.Key), Value: outy})
}
default:
out := opts.FormatDiff(r.Value)
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
}
}
recs = recs[ds.NumDiff():]
}
assert(len(recs) == 0)
return textWrap{"{", list, "}"}
}
// coalesceAdjacentRecords coalesces the list of records into groups of
// adjacent equal, or unequal counts.
func coalesceAdjacentRecords(name string, recs []reportRecord) (groups []diffStats) {
var prevCase int // Arbitrary index into which case last occurred
lastStats := func(i int) *diffStats {
if prevCase != i {
groups = append(groups, diffStats{Name: name})
prevCase = i
}
return &groups[len(groups)-1]
}
for _, r := range recs {
switch rv := r.Value; {
case rv.NumIgnored > 0 && rv.NumSame+rv.NumDiff == 0:
lastStats(1).NumIgnored++
case rv.NumDiff == 0:
lastStats(1).NumIdentical++
case rv.NumDiff > 0 && !rv.ValueY.IsValid():
lastStats(2).NumRemoved++
case rv.NumDiff > 0 && !rv.ValueX.IsValid():
lastStats(2).NumInserted++
default:
lastStats(2).NumModified++
}
}
return groups
}

279
vendor/github.com/google/go-cmp/cmp/report_reflect.go generated vendored Normal file
View File

@ -0,0 +1,279 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"fmt"
"reflect"
"strconv"
"strings"
"unicode"
"github.com/google/go-cmp/cmp/internal/flags"
"github.com/google/go-cmp/cmp/internal/value"
)
type formatValueOptions struct {
// AvoidStringer controls whether to avoid calling custom stringer
// methods like error.Error or fmt.Stringer.String.
AvoidStringer bool
// ShallowPointers controls whether to avoid descending into pointers.
// Useful when printing map keys, where pointer comparison is performed
// on the pointer address rather than the pointed-at value.
ShallowPointers bool
// PrintAddresses controls whether to print the address of all pointers,
// slice elements, and maps.
PrintAddresses bool
}
// FormatType prints the type as if it were wrapping s.
// This may return s as-is depending on the current type and TypeMode mode.
func (opts formatOptions) FormatType(t reflect.Type, s textNode) textNode {
// Check whether to emit the type or not.
switch opts.TypeMode {
case autoType:
switch t.Kind() {
case reflect.Struct, reflect.Slice, reflect.Array, reflect.Map:
if s.Equal(textNil) {
return s
}
default:
return s
}
case elideType:
return s
}
// Determine the type label, applying special handling for unnamed types.
typeName := t.String()
if t.Name() == "" {
// According to Go grammar, certain type literals contain symbols that
// do not strongly bind to the next lexicographical token (e.g., *T).
switch t.Kind() {
case reflect.Chan, reflect.Func, reflect.Ptr:
typeName = "(" + typeName + ")"
}
typeName = strings.Replace(typeName, "struct {", "struct{", -1)
typeName = strings.Replace(typeName, "interface {", "interface{", -1)
}
// Avoid wrap the value in parenthesis if unnecessary.
if s, ok := s.(textWrap); ok {
hasParens := strings.HasPrefix(s.Prefix, "(") && strings.HasSuffix(s.Suffix, ")")
hasBraces := strings.HasPrefix(s.Prefix, "{") && strings.HasSuffix(s.Suffix, "}")
if hasParens || hasBraces {
return textWrap{typeName, s, ""}
}
}
return textWrap{typeName + "(", s, ")"}
}
// FormatValue prints the reflect.Value, taking extra care to avoid descending
// into pointers already in m. As pointers are visited, m is also updated.
func (opts formatOptions) FormatValue(v reflect.Value, m visitedPointers) (out textNode) {
if !v.IsValid() {
return nil
}
t := v.Type()
// Check whether there is an Error or String method to call.
if !opts.AvoidStringer && v.CanInterface() {
// Avoid calling Error or String methods on nil receivers since many
// implementations crash when doing so.
if (t.Kind() != reflect.Ptr && t.Kind() != reflect.Interface) || !v.IsNil() {
switch v := v.Interface().(type) {
case error:
return textLine("e" + formatString(v.Error()))
case fmt.Stringer:
return textLine("s" + formatString(v.String()))
}
}
}
// Check whether to explicitly wrap the result with the type.
var skipType bool
defer func() {
if !skipType {
out = opts.FormatType(t, out)
}
}()
var ptr string
switch t.Kind() {
case reflect.Bool:
return textLine(fmt.Sprint(v.Bool()))
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return textLine(fmt.Sprint(v.Int()))
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
// Unnamed uints are usually bytes or words, so use hexadecimal.
if t.PkgPath() == "" || t.Kind() == reflect.Uintptr {
return textLine(formatHex(v.Uint()))
}
return textLine(fmt.Sprint(v.Uint()))
case reflect.Float32, reflect.Float64:
return textLine(fmt.Sprint(v.Float()))
case reflect.Complex64, reflect.Complex128:
return textLine(fmt.Sprint(v.Complex()))
case reflect.String:
return textLine(formatString(v.String()))
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
return textLine(formatPointer(v))
case reflect.Struct:
var list textList
for i := 0; i < v.NumField(); i++ {
vv := v.Field(i)
if value.IsZero(vv) {
continue // Elide fields with zero values
}
s := opts.WithTypeMode(autoType).FormatValue(vv, m)
list = append(list, textRecord{Key: t.Field(i).Name, Value: s})
}
return textWrap{"{", list, "}"}
case reflect.Slice:
if v.IsNil() {
return textNil
}
if opts.PrintAddresses {
ptr = formatPointer(v)
}
fallthrough
case reflect.Array:
var list textList
for i := 0; i < v.Len(); i++ {
vi := v.Index(i)
if vi.CanAddr() { // Check for cyclic elements
p := vi.Addr()
if m.Visit(p) {
var out textNode
out = textLine(formatPointer(p))
out = opts.WithTypeMode(emitType).FormatType(p.Type(), out)
out = textWrap{"*", out, ""}
list = append(list, textRecord{Value: out})
continue
}
}
s := opts.WithTypeMode(elideType).FormatValue(vi, m)
list = append(list, textRecord{Value: s})
}
return textWrap{ptr + "{", list, "}"}
case reflect.Map:
if v.IsNil() {
return textNil
}
if m.Visit(v) {
return textLine(formatPointer(v))
}
var list textList
for _, k := range value.SortKeys(v.MapKeys()) {
sk := formatMapKey(k)
sv := opts.WithTypeMode(elideType).FormatValue(v.MapIndex(k), m)
list = append(list, textRecord{Key: sk, Value: sv})
}
if opts.PrintAddresses {
ptr = formatPointer(v)
}
return textWrap{ptr + "{", list, "}"}
case reflect.Ptr:
if v.IsNil() {
return textNil
}
if m.Visit(v) || opts.ShallowPointers {
return textLine(formatPointer(v))
}
if opts.PrintAddresses {
ptr = formatPointer(v)
}
skipType = true // Let the underlying value print the type instead
return textWrap{"&" + ptr, opts.FormatValue(v.Elem(), m), ""}
case reflect.Interface:
if v.IsNil() {
return textNil
}
// Interfaces accept different concrete types,
// so configure the underlying value to explicitly print the type.
skipType = true // Print the concrete type instead
return opts.WithTypeMode(emitType).FormatValue(v.Elem(), m)
default:
panic(fmt.Sprintf("%v kind not handled", v.Kind()))
}
}
// formatMapKey formats v as if it were a map key.
// The result is guaranteed to be a single line.
func formatMapKey(v reflect.Value) string {
var opts formatOptions
opts.TypeMode = elideType
opts.AvoidStringer = true
opts.ShallowPointers = true
s := opts.FormatValue(v, visitedPointers{}).String()
return strings.TrimSpace(s)
}
// formatString prints s as a double-quoted or backtick-quoted string.
func formatString(s string) string {
// Use quoted string if it the same length as a raw string literal.
// Otherwise, attempt to use the raw string form.
qs := strconv.Quote(s)
if len(qs) == 1+len(s)+1 {
return qs
}
// Disallow newlines to ensure output is a single line.
// Only allow printable runes for readability purposes.
rawInvalid := func(r rune) bool {
return r == '`' || r == '\n' || !(unicode.IsPrint(r) || r == '\t')
}
if strings.IndexFunc(s, rawInvalid) < 0 {
return "`" + s + "`"
}
return qs
}
// formatHex prints u as a hexadecimal integer in Go notation.
func formatHex(u uint64) string {
var f string
switch {
case u <= 0xff:
f = "0x%02x"
case u <= 0xffff:
f = "0x%04x"
case u <= 0xffffff:
f = "0x%06x"
case u <= 0xffffffff:
f = "0x%08x"
case u <= 0xffffffffff:
f = "0x%010x"
case u <= 0xffffffffffff:
f = "0x%012x"
case u <= 0xffffffffffffff:
f = "0x%014x"
case u <= 0xffffffffffffffff:
f = "0x%016x"
}
return fmt.Sprintf(f, u)
}
// formatPointer prints the address of the pointer.
func formatPointer(v reflect.Value) string {
p := v.Pointer()
if flags.Deterministic {
p = 0xdeadf00f // Only used for stable testing purposes
}
return fmt.Sprintf("⟪0x%x⟫", p)
}
type visitedPointers map[value.Pointer]struct{}
// Visit inserts pointer v into the visited map and reports whether it had
// already been visited before.
func (m visitedPointers) Visit(v reflect.Value) bool {
p := value.PointerOf(v)
_, visited := m[p]
m[p] = struct{}{}
return visited
}

333
vendor/github.com/google/go-cmp/cmp/report_slices.go generated vendored Normal file
View File

@ -0,0 +1,333 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"bytes"
"fmt"
"reflect"
"strings"
"unicode"
"unicode/utf8"
"github.com/google/go-cmp/cmp/internal/diff"
)
// CanFormatDiffSlice reports whether we support custom formatting for nodes
// that are slices of primitive kinds or strings.
func (opts formatOptions) CanFormatDiffSlice(v *valueNode) bool {
switch {
case opts.DiffMode != diffUnknown:
return false // Must be formatting in diff mode
case v.NumDiff == 0:
return false // No differences detected
case v.NumIgnored+v.NumCompared+v.NumTransformed > 0:
// TODO: Handle the case where someone uses bytes.Equal on a large slice.
return false // Some custom option was used to determined equality
case !v.ValueX.IsValid() || !v.ValueY.IsValid():
return false // Both values must be valid
}
switch t := v.Type; t.Kind() {
case reflect.String:
case reflect.Array, reflect.Slice:
// Only slices of primitive types have specialized handling.
switch t.Elem().Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
reflect.Bool, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
default:
return false
}
// If a sufficient number of elements already differ,
// use specialized formatting even if length requirement is not met.
if v.NumDiff > v.NumSame {
return true
}
default:
return false
}
// Use specialized string diffing for longer slices or strings.
const minLength = 64
return v.ValueX.Len() >= minLength && v.ValueY.Len() >= minLength
}
// FormatDiffSlice prints a diff for the slices (or strings) represented by v.
// This provides custom-tailored logic to make printing of differences in
// textual strings and slices of primitive kinds more readable.
func (opts formatOptions) FormatDiffSlice(v *valueNode) textNode {
assert(opts.DiffMode == diffUnknown)
t, vx, vy := v.Type, v.ValueX, v.ValueY
// Auto-detect the type of the data.
var isLinedText, isText, isBinary bool
var sx, sy string
switch {
case t.Kind() == reflect.String:
sx, sy = vx.String(), vy.String()
isText = true // Initial estimate, verify later
case t.Kind() == reflect.Slice && t.Elem() == reflect.TypeOf(byte(0)):
sx, sy = string(vx.Bytes()), string(vy.Bytes())
isBinary = true // Initial estimate, verify later
case t.Kind() == reflect.Array:
// Arrays need to be addressable for slice operations to work.
vx2, vy2 := reflect.New(t).Elem(), reflect.New(t).Elem()
vx2.Set(vx)
vy2.Set(vy)
vx, vy = vx2, vy2
}
if isText || isBinary {
var numLines, lastLineIdx, maxLineLen int
isBinary = false
for i, r := range sx + sy {
if !(unicode.IsPrint(r) || unicode.IsSpace(r)) || r == utf8.RuneError {
isBinary = true
break
}
if r == '\n' {
if maxLineLen < i-lastLineIdx {
lastLineIdx = i - lastLineIdx
}
lastLineIdx = i + 1
numLines++
}
}
isText = !isBinary
isLinedText = isText && numLines >= 4 && maxLineLen <= 256
}
// Format the string into printable records.
var list textList
var delim string
switch {
// If the text appears to be multi-lined text,
// then perform differencing across individual lines.
case isLinedText:
ssx := strings.Split(sx, "\n")
ssy := strings.Split(sy, "\n")
list = opts.formatDiffSlice(
reflect.ValueOf(ssx), reflect.ValueOf(ssy), 1, "line",
func(v reflect.Value, d diffMode) textRecord {
s := formatString(v.Index(0).String())
return textRecord{Diff: d, Value: textLine(s)}
},
)
delim = "\n"
// If the text appears to be single-lined text,
// then perform differencing in approximately fixed-sized chunks.
// The output is printed as quoted strings.
case isText:
list = opts.formatDiffSlice(
reflect.ValueOf(sx), reflect.ValueOf(sy), 64, "byte",
func(v reflect.Value, d diffMode) textRecord {
s := formatString(v.String())
return textRecord{Diff: d, Value: textLine(s)}
},
)
delim = ""
// If the text appears to be binary data,
// then perform differencing in approximately fixed-sized chunks.
// The output is inspired by hexdump.
case isBinary:
list = opts.formatDiffSlice(
reflect.ValueOf(sx), reflect.ValueOf(sy), 16, "byte",
func(v reflect.Value, d diffMode) textRecord {
var ss []string
for i := 0; i < v.Len(); i++ {
ss = append(ss, formatHex(v.Index(i).Uint()))
}
s := strings.Join(ss, ", ")
comment := commentString(fmt.Sprintf("%c|%v|", d, formatASCII(v.String())))
return textRecord{Diff: d, Value: textLine(s), Comment: comment}
},
)
// For all other slices of primitive types,
// then perform differencing in approximately fixed-sized chunks.
// The size of each chunk depends on the width of the element kind.
default:
var chunkSize int
if t.Elem().Kind() == reflect.Bool {
chunkSize = 16
} else {
switch t.Elem().Bits() {
case 8:
chunkSize = 16
case 16:
chunkSize = 12
case 32:
chunkSize = 8
default:
chunkSize = 8
}
}
list = opts.formatDiffSlice(
vx, vy, chunkSize, t.Elem().Kind().String(),
func(v reflect.Value, d diffMode) textRecord {
var ss []string
for i := 0; i < v.Len(); i++ {
switch t.Elem().Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
ss = append(ss, fmt.Sprint(v.Index(i).Int()))
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
ss = append(ss, formatHex(v.Index(i).Uint()))
case reflect.Bool, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
ss = append(ss, fmt.Sprint(v.Index(i).Interface()))
}
}
s := strings.Join(ss, ", ")
return textRecord{Diff: d, Value: textLine(s)}
},
)
}
// Wrap the output with appropriate type information.
var out textNode = textWrap{"{", list, "}"}
if !isText {
// The "{...}" byte-sequence literal is not valid Go syntax for strings.
// Emit the type for extra clarity (e.g. "string{...}").
if t.Kind() == reflect.String {
opts = opts.WithTypeMode(emitType)
}
return opts.FormatType(t, out)
}
switch t.Kind() {
case reflect.String:
out = textWrap{"strings.Join(", out, fmt.Sprintf(", %q)", delim)}
if t != reflect.TypeOf(string("")) {
out = opts.FormatType(t, out)
}
case reflect.Slice:
out = textWrap{"bytes.Join(", out, fmt.Sprintf(", %q)", delim)}
if t != reflect.TypeOf([]byte(nil)) {
out = opts.FormatType(t, out)
}
}
return out
}
// formatASCII formats s as an ASCII string.
// This is useful for printing binary strings in a semi-legible way.
func formatASCII(s string) string {
b := bytes.Repeat([]byte{'.'}, len(s))
for i := 0; i < len(s); i++ {
if ' ' <= s[i] && s[i] <= '~' {
b[i] = s[i]
}
}
return string(b)
}
func (opts formatOptions) formatDiffSlice(
vx, vy reflect.Value, chunkSize int, name string,
makeRec func(reflect.Value, diffMode) textRecord,
) (list textList) {
es := diff.Difference(vx.Len(), vy.Len(), func(ix int, iy int) diff.Result {
return diff.BoolResult(vx.Index(ix).Interface() == vy.Index(iy).Interface())
})
appendChunks := func(v reflect.Value, d diffMode) int {
n0 := v.Len()
for v.Len() > 0 {
n := chunkSize
if n > v.Len() {
n = v.Len()
}
list = append(list, makeRec(v.Slice(0, n), d))
v = v.Slice(n, v.Len())
}
return n0 - v.Len()
}
groups := coalesceAdjacentEdits(name, es)
groups = coalesceInterveningIdentical(groups, chunkSize/4)
for i, ds := range groups {
// Print equal.
if ds.NumDiff() == 0 {
// Compute the number of leading and trailing equal bytes to print.
var numLo, numHi int
numEqual := ds.NumIgnored + ds.NumIdentical
for numLo < chunkSize*numContextRecords && numLo+numHi < numEqual && i != 0 {
numLo++
}
for numHi < chunkSize*numContextRecords && numLo+numHi < numEqual && i != len(groups)-1 {
numHi++
}
if numEqual-(numLo+numHi) <= chunkSize && ds.NumIgnored == 0 {
numHi = numEqual - numLo // Avoid pointless coalescing of single equal row
}
// Print the equal bytes.
appendChunks(vx.Slice(0, numLo), diffIdentical)
if numEqual > numLo+numHi {
ds.NumIdentical -= numLo + numHi
list.AppendEllipsis(ds)
}
appendChunks(vx.Slice(numEqual-numHi, numEqual), diffIdentical)
vx = vx.Slice(numEqual, vx.Len())
vy = vy.Slice(numEqual, vy.Len())
continue
}
// Print unequal.
nx := appendChunks(vx.Slice(0, ds.NumIdentical+ds.NumRemoved+ds.NumModified), diffRemoved)
vx = vx.Slice(nx, vx.Len())
ny := appendChunks(vy.Slice(0, ds.NumIdentical+ds.NumInserted+ds.NumModified), diffInserted)
vy = vy.Slice(ny, vy.Len())
}
assert(vx.Len() == 0 && vy.Len() == 0)
return list
}
// coalesceAdjacentEdits coalesces the list of edits into groups of adjacent
// equal or unequal counts.
func coalesceAdjacentEdits(name string, es diff.EditScript) (groups []diffStats) {
var prevCase int // Arbitrary index into which case last occurred
lastStats := func(i int) *diffStats {
if prevCase != i {
groups = append(groups, diffStats{Name: name})
prevCase = i
}
return &groups[len(groups)-1]
}
for _, e := range es {
switch e {
case diff.Identity:
lastStats(1).NumIdentical++
case diff.UniqueX:
lastStats(2).NumRemoved++
case diff.UniqueY:
lastStats(2).NumInserted++
case diff.Modified:
lastStats(2).NumModified++
}
}
return groups
}
// coalesceInterveningIdentical coalesces sufficiently short (<= windowSize)
// equal groups into adjacent unequal groups that currently result in a
// dual inserted/removed printout. This acts as a high-pass filter to smooth
// out high-frequency changes within the windowSize.
func coalesceInterveningIdentical(groups []diffStats, windowSize int) []diffStats {
groups, groupsOrig := groups[:0], groups
for i, ds := range groupsOrig {
if len(groups) >= 2 && ds.NumDiff() > 0 {
prev := &groups[len(groups)-2] // Unequal group
curr := &groups[len(groups)-1] // Equal group
next := &groupsOrig[i] // Unequal group
hadX, hadY := prev.NumRemoved > 0, prev.NumInserted > 0
hasX, hasY := next.NumRemoved > 0, next.NumInserted > 0
if ((hadX || hasX) && (hadY || hasY)) && curr.NumIdentical <= windowSize {
*prev = (*prev).Append(*curr).Append(*next)
groups = groups[:len(groups)-1] // Truncate off equal group
continue
}
}
groups = append(groups, ds)
}
return groups
}

382
vendor/github.com/google/go-cmp/cmp/report_text.go generated vendored Normal file
View File

@ -0,0 +1,382 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"bytes"
"fmt"
"math/rand"
"strings"
"time"
"github.com/google/go-cmp/cmp/internal/flags"
)
var randBool = rand.New(rand.NewSource(time.Now().Unix())).Intn(2) == 0
type indentMode int
func (n indentMode) appendIndent(b []byte, d diffMode) []byte {
if flags.Deterministic || randBool {
// Use regular spaces (U+0020).
switch d {
case diffUnknown, diffIdentical:
b = append(b, " "...)
case diffRemoved:
b = append(b, "- "...)
case diffInserted:
b = append(b, "+ "...)
}
} else {
// Use non-breaking spaces (U+00a0).
switch d {
case diffUnknown, diffIdentical:
b = append(b, "  "...)
case diffRemoved:
b = append(b, "- "...)
case diffInserted:
b = append(b, "+ "...)
}
}
return repeatCount(n).appendChar(b, '\t')
}
type repeatCount int
func (n repeatCount) appendChar(b []byte, c byte) []byte {
for ; n > 0; n-- {
b = append(b, c)
}
return b
}
// textNode is a simplified tree-based representation of structured text.
// Possible node types are textWrap, textList, or textLine.
type textNode interface {
// Len reports the length in bytes of a single-line version of the tree.
// Nested textRecord.Diff and textRecord.Comment fields are ignored.
Len() int
// Equal reports whether the two trees are structurally identical.
// Nested textRecord.Diff and textRecord.Comment fields are compared.
Equal(textNode) bool
// String returns the string representation of the text tree.
// It is not guaranteed that len(x.String()) == x.Len(),
// nor that x.String() == y.String() implies that x.Equal(y).
String() string
// formatCompactTo formats the contents of the tree as a single-line string
// to the provided buffer. Any nested textRecord.Diff and textRecord.Comment
// fields are ignored.
//
// However, not all nodes in the tree should be collapsed as a single-line.
// If a node can be collapsed as a single-line, it is replaced by a textLine
// node. Since the top-level node cannot replace itself, this also returns
// the current node itself.
//
// This does not mutate the receiver.
formatCompactTo([]byte, diffMode) ([]byte, textNode)
// formatExpandedTo formats the contents of the tree as a multi-line string
// to the provided buffer. In order for column alignment to operate well,
// formatCompactTo must be called before calling formatExpandedTo.
formatExpandedTo([]byte, diffMode, indentMode) []byte
}
// textWrap is a wrapper that concatenates a prefix and/or a suffix
// to the underlying node.
type textWrap struct {
Prefix string // e.g., "bytes.Buffer{"
Value textNode // textWrap | textList | textLine
Suffix string // e.g., "}"
}
func (s textWrap) Len() int {
return len(s.Prefix) + s.Value.Len() + len(s.Suffix)
}
func (s1 textWrap) Equal(s2 textNode) bool {
if s2, ok := s2.(textWrap); ok {
return s1.Prefix == s2.Prefix && s1.Value.Equal(s2.Value) && s1.Suffix == s2.Suffix
}
return false
}
func (s textWrap) String() string {
var d diffMode
var n indentMode
_, s2 := s.formatCompactTo(nil, d)
b := n.appendIndent(nil, d) // Leading indent
b = s2.formatExpandedTo(b, d, n) // Main body
b = append(b, '\n') // Trailing newline
return string(b)
}
func (s textWrap) formatCompactTo(b []byte, d diffMode) ([]byte, textNode) {
n0 := len(b) // Original buffer length
b = append(b, s.Prefix...)
b, s.Value = s.Value.formatCompactTo(b, d)
b = append(b, s.Suffix...)
if _, ok := s.Value.(textLine); ok {
return b, textLine(b[n0:])
}
return b, s
}
func (s textWrap) formatExpandedTo(b []byte, d diffMode, n indentMode) []byte {
b = append(b, s.Prefix...)
b = s.Value.formatExpandedTo(b, d, n)
b = append(b, s.Suffix...)
return b
}
// textList is a comma-separated list of textWrap or textLine nodes.
// The list may be formatted as multi-lines or single-line at the discretion
// of the textList.formatCompactTo method.
type textList []textRecord
type textRecord struct {
Diff diffMode // e.g., 0 or '-' or '+'
Key string // e.g., "MyField"
Value textNode // textWrap | textLine
Comment fmt.Stringer // e.g., "6 identical fields"
}
// AppendEllipsis appends a new ellipsis node to the list if none already
// exists at the end. If cs is non-zero it coalesces the statistics with the
// previous diffStats.
func (s *textList) AppendEllipsis(ds diffStats) {
hasStats := ds != diffStats{}
if len(*s) == 0 || !(*s)[len(*s)-1].Value.Equal(textEllipsis) {
if hasStats {
*s = append(*s, textRecord{Value: textEllipsis, Comment: ds})
} else {
*s = append(*s, textRecord{Value: textEllipsis})
}
return
}
if hasStats {
(*s)[len(*s)-1].Comment = (*s)[len(*s)-1].Comment.(diffStats).Append(ds)
}
}
func (s textList) Len() (n int) {
for i, r := range s {
n += len(r.Key)
if r.Key != "" {
n += len(": ")
}
n += r.Value.Len()
if i < len(s)-1 {
n += len(", ")
}
}
return n
}
func (s1 textList) Equal(s2 textNode) bool {
if s2, ok := s2.(textList); ok {
if len(s1) != len(s2) {
return false
}
for i := range s1 {
r1, r2 := s1[i], s2[i]
if !(r1.Diff == r2.Diff && r1.Key == r2.Key && r1.Value.Equal(r2.Value) && r1.Comment == r2.Comment) {
return false
}
}
return true
}
return false
}
func (s textList) String() string {
return textWrap{"{", s, "}"}.String()
}
func (s textList) formatCompactTo(b []byte, d diffMode) ([]byte, textNode) {
s = append(textList(nil), s...) // Avoid mutating original
// Determine whether we can collapse this list as a single line.
n0 := len(b) // Original buffer length
var multiLine bool
for i, r := range s {
if r.Diff == diffInserted || r.Diff == diffRemoved {
multiLine = true
}
b = append(b, r.Key...)
if r.Key != "" {
b = append(b, ": "...)
}
b, s[i].Value = r.Value.formatCompactTo(b, d|r.Diff)
if _, ok := s[i].Value.(textLine); !ok {
multiLine = true
}
if r.Comment != nil {
multiLine = true
}
if i < len(s)-1 {
b = append(b, ", "...)
}
}
// Force multi-lined output when printing a removed/inserted node that
// is sufficiently long.
if (d == diffInserted || d == diffRemoved) && len(b[n0:]) > 80 {
multiLine = true
}
if !multiLine {
return b, textLine(b[n0:])
}
return b, s
}
func (s textList) formatExpandedTo(b []byte, d diffMode, n indentMode) []byte {
alignKeyLens := s.alignLens(
func(r textRecord) bool {
_, isLine := r.Value.(textLine)
return r.Key == "" || !isLine
},
func(r textRecord) int { return len(r.Key) },
)
alignValueLens := s.alignLens(
func(r textRecord) bool {
_, isLine := r.Value.(textLine)
return !isLine || r.Value.Equal(textEllipsis) || r.Comment == nil
},
func(r textRecord) int { return len(r.Value.(textLine)) },
)
// Format the list as a multi-lined output.
n++
for i, r := range s {
b = n.appendIndent(append(b, '\n'), d|r.Diff)
if r.Key != "" {
b = append(b, r.Key+": "...)
}
b = alignKeyLens[i].appendChar(b, ' ')
b = r.Value.formatExpandedTo(b, d|r.Diff, n)
if !r.Value.Equal(textEllipsis) {
b = append(b, ',')
}
b = alignValueLens[i].appendChar(b, ' ')
if r.Comment != nil {
b = append(b, " // "+r.Comment.String()...)
}
}
n--
return n.appendIndent(append(b, '\n'), d)
}
func (s textList) alignLens(
skipFunc func(textRecord) bool,
lenFunc func(textRecord) int,
) []repeatCount {
var startIdx, endIdx, maxLen int
lens := make([]repeatCount, len(s))
for i, r := range s {
if skipFunc(r) {
for j := startIdx; j < endIdx && j < len(s); j++ {
lens[j] = repeatCount(maxLen - lenFunc(s[j]))
}
startIdx, endIdx, maxLen = i+1, i+1, 0
} else {
if maxLen < lenFunc(r) {
maxLen = lenFunc(r)
}
endIdx = i + 1
}
}
for j := startIdx; j < endIdx && j < len(s); j++ {
lens[j] = repeatCount(maxLen - lenFunc(s[j]))
}
return lens
}
// textLine is a single-line segment of text and is always a leaf node
// in the textNode tree.
type textLine []byte
var (
textNil = textLine("nil")
textEllipsis = textLine("...")
)
func (s textLine) Len() int {
return len(s)
}
func (s1 textLine) Equal(s2 textNode) bool {
if s2, ok := s2.(textLine); ok {
return bytes.Equal([]byte(s1), []byte(s2))
}
return false
}
func (s textLine) String() string {
return string(s)
}
func (s textLine) formatCompactTo(b []byte, d diffMode) ([]byte, textNode) {
return append(b, s...), s
}
func (s textLine) formatExpandedTo(b []byte, _ diffMode, _ indentMode) []byte {
return append(b, s...)
}
type diffStats struct {
Name string
NumIgnored int
NumIdentical int
NumRemoved int
NumInserted int
NumModified int
}
func (s diffStats) NumDiff() int {
return s.NumRemoved + s.NumInserted + s.NumModified
}
func (s diffStats) Append(ds diffStats) diffStats {
assert(s.Name == ds.Name)
s.NumIgnored += ds.NumIgnored
s.NumIdentical += ds.NumIdentical
s.NumRemoved += ds.NumRemoved
s.NumInserted += ds.NumInserted
s.NumModified += ds.NumModified
return s
}
// String prints a humanly-readable summary of coalesced records.
//
// Example:
// diffStats{Name: "Field", NumIgnored: 5}.String() => "5 ignored fields"
func (s diffStats) String() string {
var ss []string
var sum int
labels := [...]string{"ignored", "identical", "removed", "inserted", "modified"}
counts := [...]int{s.NumIgnored, s.NumIdentical, s.NumRemoved, s.NumInserted, s.NumModified}
for i, n := range counts {
if n > 0 {
ss = append(ss, fmt.Sprintf("%d %v", n, labels[i]))
}
sum += n
}
// Pluralize the name (adjusting for some obscure English grammar rules).
name := s.Name
if sum > 1 {
name = name + "s"
if strings.HasSuffix(name, "ys") {
name = name[:len(name)-2] + "ies" // e.g., "entrys" => "entries"
}
}
// Format the list according to English grammar (with Oxford comma).
switch n := len(ss); n {
case 0:
return ""
case 1, 2:
return strings.Join(ss, " and ") + " " + name
default:
return strings.Join(ss[:n-1], ", ") + ", and " + ss[n-1] + " " + name
}
}
type commentString string
func (s commentString) String() string { return string(s) }

121
vendor/github.com/google/go-cmp/cmp/report_value.go generated vendored Normal file
View File

@ -0,0 +1,121 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import "reflect"
// valueNode represents a single node within a report, which is a
// structured representation of the value tree, containing information
// regarding which nodes are equal or not.
type valueNode struct {
parent *valueNode
Type reflect.Type
ValueX reflect.Value
ValueY reflect.Value
// NumSame is the number of leaf nodes that are equal.
// All descendants are equal only if NumDiff is 0.
NumSame int
// NumDiff is the number of leaf nodes that are not equal.
NumDiff int
// NumIgnored is the number of leaf nodes that are ignored.
NumIgnored int
// NumCompared is the number of leaf nodes that were compared
// using an Equal method or Comparer function.
NumCompared int
// NumTransformed is the number of non-leaf nodes that were transformed.
NumTransformed int
// NumChildren is the number of transitive descendants of this node.
// This counts from zero; thus, leaf nodes have no descendants.
NumChildren int
// MaxDepth is the maximum depth of the tree. This counts from zero;
// thus, leaf nodes have a depth of zero.
MaxDepth int
// Records is a list of struct fields, slice elements, or map entries.
Records []reportRecord // If populated, implies Value is not populated
// Value is the result of a transformation, pointer indirect, of
// type assertion.
Value *valueNode // If populated, implies Records is not populated
// TransformerName is the name of the transformer.
TransformerName string // If non-empty, implies Value is populated
}
type reportRecord struct {
Key reflect.Value // Invalid for slice element
Value *valueNode
}
func (parent *valueNode) PushStep(ps PathStep) (child *valueNode) {
vx, vy := ps.Values()
child = &valueNode{parent: parent, Type: ps.Type(), ValueX: vx, ValueY: vy}
switch s := ps.(type) {
case StructField:
assert(parent.Value == nil)
parent.Records = append(parent.Records, reportRecord{Key: reflect.ValueOf(s.Name()), Value: child})
case SliceIndex:
assert(parent.Value == nil)
parent.Records = append(parent.Records, reportRecord{Value: child})
case MapIndex:
assert(parent.Value == nil)
parent.Records = append(parent.Records, reportRecord{Key: s.Key(), Value: child})
case Indirect:
assert(parent.Value == nil && parent.Records == nil)
parent.Value = child
case TypeAssertion:
assert(parent.Value == nil && parent.Records == nil)
parent.Value = child
case Transform:
assert(parent.Value == nil && parent.Records == nil)
parent.Value = child
parent.TransformerName = s.Name()
parent.NumTransformed++
default:
assert(parent == nil) // Must be the root step
}
return child
}
func (r *valueNode) Report(rs Result) {
assert(r.MaxDepth == 0) // May only be called on leaf nodes
if rs.ByIgnore() {
r.NumIgnored++
} else {
if rs.Equal() {
r.NumSame++
} else {
r.NumDiff++
}
}
assert(r.NumSame+r.NumDiff+r.NumIgnored == 1)
if rs.ByMethod() {
r.NumCompared++
}
if rs.ByFunc() {
r.NumCompared++
}
assert(r.NumCompared <= 1)
}
func (child *valueNode) PopStep() (parent *valueNode) {
if child.parent == nil {
return nil
}
parent = child.parent
parent.NumSame += child.NumSame
parent.NumDiff += child.NumDiff
parent.NumIgnored += child.NumIgnored
parent.NumCompared += child.NumCompared
parent.NumTransformed += child.NumTransformed
parent.NumChildren += child.NumChildren + 1
if parent.MaxDepth < child.MaxDepth+1 {
parent.MaxDepth = child.MaxDepth + 1
}
return parent
}

View File

@ -1,53 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"fmt"
"reflect"
"strings"
"github.com/google/go-cmp/cmp/internal/value"
)
type defaultReporter struct {
Option
diffs []string // List of differences, possibly truncated
ndiffs int // Total number of differences
nbytes int // Number of bytes in diffs
nlines int // Number of lines in diffs
}
var _ reporter = (*defaultReporter)(nil)
func (r *defaultReporter) Report(x, y reflect.Value, eq bool, p Path) {
if eq {
return // Ignore equal results
}
const maxBytes = 4096
const maxLines = 256
r.ndiffs++
if r.nbytes < maxBytes && r.nlines < maxLines {
sx := value.Format(x, value.FormatConfig{UseStringer: true})
sy := value.Format(y, value.FormatConfig{UseStringer: true})
if sx == sy {
// Unhelpful output, so use more exact formatting.
sx = value.Format(x, value.FormatConfig{PrintPrimitiveType: true})
sy = value.Format(y, value.FormatConfig{PrintPrimitiveType: true})
}
s := fmt.Sprintf("%#v:\n\t-: %s\n\t+: %s\n", p, sx, sy)
r.diffs = append(r.diffs, s)
r.nbytes += len(s)
r.nlines += strings.Count(s, "\n")
}
}
func (r *defaultReporter) String() string {
s := strings.Join(r.diffs, "")
if r.ndiffs == len(r.diffs) {
return s
}
return fmt.Sprintf("%s... %d more differences ...", s, r.ndiffs-len(r.diffs))
}

3
vendor/modules.txt vendored
View File

@ -155,10 +155,11 @@ github.com/golang/protobuf/ptypes/timestamp
github.com/golang/protobuf/protoc-gen-go/descriptor github.com/golang/protobuf/protoc-gen-go/descriptor
# github.com/golang/snappy v0.0.0-20180518054509-2e65f85255db # github.com/golang/snappy v0.0.0-20180518054509-2e65f85255db
github.com/golang/snappy github.com/golang/snappy
# github.com/google/go-cmp v0.2.0 # github.com/google/go-cmp v0.3.0
github.com/google/go-cmp/cmp github.com/google/go-cmp/cmp
github.com/google/go-cmp/cmp/cmpopts github.com/google/go-cmp/cmp/cmpopts
github.com/google/go-cmp/cmp/internal/diff github.com/google/go-cmp/cmp/internal/diff
github.com/google/go-cmp/cmp/internal/flags
github.com/google/go-cmp/cmp/internal/function github.com/google/go-cmp/cmp/internal/function
github.com/google/go-cmp/cmp/internal/value github.com/google/go-cmp/cmp/internal/value
# github.com/google/go-querystring v1.0.0 # github.com/google/go-querystring v1.0.0