terraform/config/hcl2shim/values.go

357 lines
10 KiB
Go
Raw Normal View History

package hcl2shim
import (
"fmt"
"math/big"
"github.com/hashicorp/hil/ast"
"github.com/zclconf/go-cty/cty"
"github.com/hashicorp/terraform/configs/configschema"
)
// UnknownVariableValue is a sentinel value that can be used
// to denote that the value of a variable is unknown at this time.
// RawConfig uses this information to build up data about
// unknown keys.
const UnknownVariableValue = "74D93920-ED26-11E3-AC10-0800200C9A66"
// ConfigValueFromHCL2Block is like ConfigValueFromHCL2 but it works only for
// known object values and uses the provided block schema to perform some
// additional normalization to better mimic the shape of value that the old
// HCL1/HIL-based codepaths would've produced.
//
// In particular, it discards the collections that we use to represent nested
// blocks (other than NestingSingle) if they are empty, which better mimics
// the HCL1 behavior because HCL1 had no knowledge of the schema and so didn't
// know that an unspecified block _could_ exist.
//
// The given object value must conform to the schema's implied type or this
// function will panic or produce incorrect results.
//
// This is primarily useful for the final transition from new-style values to
// terraform.ResourceConfig before calling to a legacy provider, since
// helper/schema (the old provider SDK) is particularly sensitive to these
// subtle differences within its validation code.
func ConfigValueFromHCL2Block(v cty.Value, schema *configschema.Block) map[string]interface{} {
if v.IsNull() {
return nil
}
if !v.IsKnown() {
panic("ConfigValueFromHCL2Block used with unknown value")
}
if !v.Type().IsObjectType() {
panic(fmt.Sprintf("ConfigValueFromHCL2Block used with non-object value %#v", v))
}
atys := v.Type().AttributeTypes()
ret := make(map[string]interface{})
for name := range schema.Attributes {
if _, exists := atys[name]; !exists {
continue
}
av := v.GetAttr(name)
if av.IsNull() {
// Skip nulls altogether, to better mimic how HCL1 would behave
continue
}
ret[name] = ConfigValueFromHCL2(av)
}
for name, blockS := range schema.BlockTypes {
if _, exists := atys[name]; !exists {
continue
}
bv := v.GetAttr(name)
if !bv.IsKnown() {
ret[name] = UnknownVariableValue
continue
}
if bv.IsNull() {
continue
}
switch blockS.Nesting {
case configschema.NestingSingle:
ret[name] = ConfigValueFromHCL2Block(bv, &blockS.Block)
case configschema.NestingList, configschema.NestingSet:
l := bv.LengthInt()
if l == 0 {
// skip empty collections to better mimic how HCL1 would behave
continue
}
elems := make([]interface{}, 0, l)
for it := bv.ElementIterator(); it.Next(); {
_, ev := it.Element()
if !ev.IsKnown() {
elems = append(elems, UnknownVariableValue)
continue
}
elems = append(elems, ConfigValueFromHCL2Block(ev, &blockS.Block))
}
ret[name] = elems
case configschema.NestingMap:
if bv.LengthInt() == 0 {
// skip empty collections to better mimic how HCL1 would behave
continue
}
elems := make(map[string]interface{})
for it := bv.ElementIterator(); it.Next(); {
ek, ev := it.Element()
if !ev.IsKnown() {
elems[ek.AsString()] = UnknownVariableValue
continue
}
elems[ek.AsString()] = ConfigValueFromHCL2Block(ev, &blockS.Block)
}
ret[name] = elems
}
}
return ret
}
// ConfigValueFromHCL2 converts a value from HCL2 (really, from the cty dynamic
// types library that HCL2 uses) to a value type that matches what would've
// been produced from the HCL-based interpolator for an equivalent structure.
//
// This function will transform a cty null value into a Go nil value, which
// isn't a possible outcome of the HCL/HIL-based decoder and so callers may
// need to detect and reject any null values.
func ConfigValueFromHCL2(v cty.Value) interface{} {
if !v.IsKnown() {
return UnknownVariableValue
}
if v.IsNull() {
return nil
}
switch v.Type() {
case cty.Bool:
return v.True() // like HCL.BOOL
case cty.String:
return v.AsString() // like HCL token.STRING or token.HEREDOC
case cty.Number:
// We can't match HCL _exactly_ here because it distinguishes between
// int and float values, but we'll get as close as we can by using
// an int if the number is exactly representable, and a float if not.
// The conversion to float will force precision to that of a float64,
// which is potentially losing information from the specific number
// given, but no worse than what HCL would've done in its own conversion
// to float.
f := v.AsBigFloat()
if i, acc := f.Int64(); acc == big.Exact {
// if we're on a 32-bit system and the number is too big for 32-bit
// int then we'll fall through here and use a float64.
const MaxInt = int(^uint(0) >> 1)
const MinInt = -MaxInt - 1
if i <= int64(MaxInt) && i >= int64(MinInt) {
return int(i) // Like HCL token.NUMBER
}
}
f64, _ := f.Float64()
return f64 // like HCL token.FLOAT
}
if v.Type().IsListType() || v.Type().IsSetType() || v.Type().IsTupleType() {
l := make([]interface{}, 0, v.LengthInt())
it := v.ElementIterator()
for it.Next() {
_, ev := it.Element()
cv := ConfigValueFromHCL2(ev)
if cv != nil {
l = append(l, cv)
}
}
return l
}
if v.Type().IsMapType() || v.Type().IsObjectType() {
l := make(map[string]interface{})
it := v.ElementIterator()
for it.Next() {
ek, ev := it.Element()
cv := ConfigValueFromHCL2(ev)
if cv != nil {
l[ek.AsString()] = cv
}
}
return l
}
// If we fall out here then we have some weird type that we haven't
// accounted for. This should never happen unless the caller is using
// capsule types, and we don't currently have any such types defined.
panic(fmt.Errorf("can't convert %#v to config value", v))
}
// HCL2ValueFromConfigValue is the opposite of configValueFromHCL2: it takes
// a value as would be returned from the old interpolator and turns it into
// a cty.Value so it can be used within, for example, an HCL2 EvalContext.
func HCL2ValueFromConfigValue(v interface{}) cty.Value {
if v == nil {
return cty.NullVal(cty.DynamicPseudoType)
}
if v == UnknownVariableValue {
return cty.DynamicVal
}
switch tv := v.(type) {
case bool:
return cty.BoolVal(tv)
case string:
return cty.StringVal(tv)
case int:
return cty.NumberIntVal(int64(tv))
case float64:
return cty.NumberFloatVal(tv)
case []interface{}:
vals := make([]cty.Value, len(tv))
for i, ev := range tv {
vals[i] = HCL2ValueFromConfigValue(ev)
}
return cty.TupleVal(vals)
case map[string]interface{}:
vals := map[string]cty.Value{}
for k, ev := range tv {
vals[k] = HCL2ValueFromConfigValue(ev)
}
return cty.ObjectVal(vals)
default:
// HCL/HIL should never generate anything that isn't caught by
// the above, so if we get here something has gone very wrong.
panic(fmt.Errorf("can't convert %#v to cty.Value", v))
}
}
func HILVariableFromHCL2Value(v cty.Value) ast.Variable {
if v.IsNull() {
// Caller should guarantee/check this before calling
panic("Null values cannot be represented in HIL")
}
if !v.IsKnown() {
return ast.Variable{
Type: ast.TypeUnknown,
Value: UnknownVariableValue,
}
}
switch v.Type() {
case cty.Bool:
return ast.Variable{
Type: ast.TypeBool,
Value: v.True(),
}
case cty.Number:
v := ConfigValueFromHCL2(v)
switch tv := v.(type) {
case int:
return ast.Variable{
Type: ast.TypeInt,
Value: tv,
}
case float64:
return ast.Variable{
Type: ast.TypeFloat,
Value: tv,
}
default:
// should never happen
panic("invalid return value for configValueFromHCL2")
}
case cty.String:
return ast.Variable{
Type: ast.TypeString,
Value: v.AsString(),
}
}
if v.Type().IsListType() || v.Type().IsSetType() || v.Type().IsTupleType() {
l := make([]ast.Variable, 0, v.LengthInt())
it := v.ElementIterator()
for it.Next() {
_, ev := it.Element()
l = append(l, HILVariableFromHCL2Value(ev))
}
// If we were given a tuple then this could actually produce an invalid
// list with non-homogenous types, which we expect to be caught inside
// HIL just like a user-supplied non-homogenous list would be.
return ast.Variable{
Type: ast.TypeList,
Value: l,
}
}
if v.Type().IsMapType() || v.Type().IsObjectType() {
l := make(map[string]ast.Variable)
it := v.ElementIterator()
for it.Next() {
ek, ev := it.Element()
l[ek.AsString()] = HILVariableFromHCL2Value(ev)
}
// If we were given an object then this could actually produce an invalid
// map with non-homogenous types, which we expect to be caught inside
// HIL just like a user-supplied non-homogenous map would be.
return ast.Variable{
Type: ast.TypeMap,
Value: l,
}
}
// If we fall out here then we have some weird type that we haven't
// accounted for. This should never happen unless the caller is using
// capsule types, and we don't currently have any such types defined.
panic(fmt.Errorf("can't convert %#v to HIL variable", v))
}
func HCL2ValueFromHILVariable(v ast.Variable) cty.Value {
switch v.Type {
case ast.TypeList:
vals := make([]cty.Value, len(v.Value.([]ast.Variable)))
for i, ev := range v.Value.([]ast.Variable) {
vals[i] = HCL2ValueFromHILVariable(ev)
}
return cty.TupleVal(vals)
case ast.TypeMap:
vals := make(map[string]cty.Value, len(v.Value.(map[string]ast.Variable)))
for k, ev := range v.Value.(map[string]ast.Variable) {
vals[k] = HCL2ValueFromHILVariable(ev)
}
return cty.ObjectVal(vals)
default:
return HCL2ValueFromConfigValue(v.Value)
}
}
func HCL2TypeForHILType(hilType ast.Type) cty.Type {
switch hilType {
case ast.TypeAny:
return cty.DynamicPseudoType
case ast.TypeUnknown:
return cty.DynamicPseudoType
case ast.TypeBool:
return cty.Bool
case ast.TypeInt:
return cty.Number
case ast.TypeFloat:
return cty.Number
case ast.TypeString:
return cty.String
case ast.TypeList:
return cty.List(cty.DynamicPseudoType)
case ast.TypeMap:
return cty.Map(cty.DynamicPseudoType)
default:
return cty.NilType // equilvalent to ast.TypeInvalid
}
}