2017-09-20 23:39:34 +02:00
|
|
|
package cty
|
|
|
|
|
|
|
|
import (
|
|
|
|
"bytes"
|
|
|
|
"fmt"
|
|
|
|
"hash/crc32"
|
|
|
|
"math/big"
|
|
|
|
"sort"
|
2019-05-01 00:29:47 +02:00
|
|
|
|
|
|
|
"github.com/zclconf/go-cty/cty/set"
|
2017-09-20 23:39:34 +02:00
|
|
|
)
|
|
|
|
|
|
|
|
// setRules provides a Rules implementation for the ./set package that
|
|
|
|
// respects the equality rules for cty values of the given type.
|
|
|
|
//
|
|
|
|
// This implementation expects that values added to the set will be
|
|
|
|
// valid internal values for the given Type, which is to say that wrapping
|
|
|
|
// the given value in a Value struct along with the ruleset's type should
|
|
|
|
// produce a valid, working Value.
|
|
|
|
type setRules struct {
|
|
|
|
Type Type
|
|
|
|
}
|
|
|
|
|
2019-05-01 00:29:47 +02:00
|
|
|
var _ set.OrderedRules = setRules{}
|
|
|
|
|
2018-03-17 00:59:02 +01:00
|
|
|
// Hash returns a hash value for the receiver that can be used for equality
|
|
|
|
// checks where some inaccuracy is tolerable.
|
|
|
|
//
|
|
|
|
// The hash function is value-type-specific, so it is not meaningful to compare
|
|
|
|
// hash results for values of different types.
|
|
|
|
//
|
|
|
|
// This function is not safe to use for security-related applications, since
|
|
|
|
// the hash used is not strong enough.
|
|
|
|
func (val Value) Hash() int {
|
|
|
|
hashBytes := makeSetHashBytes(val)
|
|
|
|
return int(crc32.ChecksumIEEE(hashBytes))
|
|
|
|
}
|
|
|
|
|
2017-09-20 23:39:34 +02:00
|
|
|
func (r setRules) Hash(v interface{}) int {
|
2018-03-17 00:59:02 +01:00
|
|
|
return Value{
|
2017-09-20 23:39:34 +02:00
|
|
|
ty: r.Type,
|
|
|
|
v: v,
|
2018-03-17 00:59:02 +01:00
|
|
|
}.Hash()
|
2017-09-20 23:39:34 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
func (r setRules) Equivalent(v1 interface{}, v2 interface{}) bool {
|
|
|
|
v1v := Value{
|
|
|
|
ty: r.Type,
|
|
|
|
v: v1,
|
|
|
|
}
|
|
|
|
v2v := Value{
|
|
|
|
ty: r.Type,
|
|
|
|
v: v2,
|
|
|
|
}
|
|
|
|
|
|
|
|
eqv := v1v.Equals(v2v)
|
|
|
|
|
|
|
|
// By comparing the result to true we ensure that an Unknown result,
|
|
|
|
// which will result if either value is unknown, will be considered
|
|
|
|
// as non-equivalent. Two unknown values are not equivalent for the
|
|
|
|
// sake of set membership.
|
|
|
|
return eqv.v == true
|
|
|
|
}
|
|
|
|
|
2019-05-01 00:29:47 +02:00
|
|
|
// Less is an implementation of set.OrderedRules so that we can iterate over
|
|
|
|
// set elements in a consistent order, where such an order is possible.
|
|
|
|
func (r setRules) Less(v1, v2 interface{}) bool {
|
|
|
|
v1v := Value{
|
|
|
|
ty: r.Type,
|
|
|
|
v: v1,
|
|
|
|
}
|
|
|
|
v2v := Value{
|
|
|
|
ty: r.Type,
|
|
|
|
v: v2,
|
|
|
|
}
|
|
|
|
|
|
|
|
if v1v.RawEquals(v2v) { // Easy case: if they are equal then v1 can't be less
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
|
|
|
// Null values always sort after non-null values
|
|
|
|
if v2v.IsNull() && !v1v.IsNull() {
|
|
|
|
return true
|
|
|
|
} else if v1v.IsNull() {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
// Unknown values always sort after known values
|
|
|
|
if v1v.IsKnown() && !v2v.IsKnown() {
|
|
|
|
return true
|
|
|
|
} else if !v1v.IsKnown() {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
|
|
|
switch r.Type {
|
|
|
|
case String:
|
|
|
|
// String values sort lexicographically
|
|
|
|
return v1v.AsString() < v2v.AsString()
|
|
|
|
case Bool:
|
|
|
|
// Weird to have a set of bools, but if we do then false sorts before true.
|
|
|
|
if v2v.True() || !v1v.True() {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
return false
|
|
|
|
case Number:
|
|
|
|
v1f := v1v.AsBigFloat()
|
|
|
|
v2f := v2v.AsBigFloat()
|
|
|
|
return v1f.Cmp(v2f) < 0
|
|
|
|
default:
|
|
|
|
// No other types have a well-defined ordering, so we just produce a
|
|
|
|
// default consistent-but-undefined ordering then. This situation is
|
|
|
|
// not considered a compatibility constraint; callers should rely only
|
|
|
|
// on the ordering rules for primitive values.
|
|
|
|
v1h := makeSetHashBytes(v1v)
|
|
|
|
v2h := makeSetHashBytes(v2v)
|
|
|
|
return bytes.Compare(v1h, v2h) < 0
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-09-20 23:39:34 +02:00
|
|
|
func makeSetHashBytes(val Value) []byte {
|
|
|
|
var buf bytes.Buffer
|
|
|
|
appendSetHashBytes(val, &buf)
|
|
|
|
return buf.Bytes()
|
|
|
|
}
|
|
|
|
|
|
|
|
func appendSetHashBytes(val Value, buf *bytes.Buffer) {
|
|
|
|
// Exactly what bytes we generate here don't matter as long as the following
|
|
|
|
// constraints hold:
|
|
|
|
// - Unknown and null values all generate distinct strings from
|
|
|
|
// each other and from any normal value of the given type.
|
|
|
|
// - The delimiter used to separate items in a compound structure can
|
|
|
|
// never appear literally in any of its elements.
|
|
|
|
// Since we don't support hetrogenous lists we don't need to worry about
|
|
|
|
// collisions between values of different types, apart from
|
|
|
|
// PseudoTypeDynamic.
|
|
|
|
// If in practice we *do* get a collision then it's not a big deal because
|
|
|
|
// the Equivalent function will still distinguish values, but set
|
|
|
|
// performance will be best if we are able to produce a distinct string
|
|
|
|
// for each distinct value, unknown values notwithstanding.
|
|
|
|
if !val.IsKnown() {
|
|
|
|
buf.WriteRune('?')
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if val.IsNull() {
|
|
|
|
buf.WriteRune('~')
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
switch val.ty {
|
|
|
|
case Number:
|
|
|
|
buf.WriteString(val.v.(*big.Float).String())
|
|
|
|
return
|
|
|
|
case Bool:
|
|
|
|
if val.v.(bool) {
|
|
|
|
buf.WriteRune('T')
|
|
|
|
} else {
|
|
|
|
buf.WriteRune('F')
|
|
|
|
}
|
|
|
|
return
|
|
|
|
case String:
|
|
|
|
buf.WriteString(fmt.Sprintf("%q", val.v.(string)))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
if val.ty.IsMapType() {
|
|
|
|
buf.WriteRune('{')
|
|
|
|
val.ForEachElement(func(keyVal, elementVal Value) bool {
|
|
|
|
appendSetHashBytes(keyVal, buf)
|
|
|
|
buf.WriteRune(':')
|
|
|
|
appendSetHashBytes(elementVal, buf)
|
|
|
|
buf.WriteRune(';')
|
|
|
|
return false
|
|
|
|
})
|
|
|
|
buf.WriteRune('}')
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
if val.ty.IsListType() || val.ty.IsSetType() {
|
|
|
|
buf.WriteRune('[')
|
|
|
|
val.ForEachElement(func(keyVal, elementVal Value) bool {
|
|
|
|
appendSetHashBytes(elementVal, buf)
|
|
|
|
buf.WriteRune(';')
|
|
|
|
return false
|
|
|
|
})
|
|
|
|
buf.WriteRune(']')
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
if val.ty.IsObjectType() {
|
|
|
|
buf.WriteRune('<')
|
|
|
|
attrNames := make([]string, 0, len(val.ty.AttributeTypes()))
|
|
|
|
for attrName := range val.ty.AttributeTypes() {
|
|
|
|
attrNames = append(attrNames, attrName)
|
|
|
|
}
|
|
|
|
sort.Strings(attrNames)
|
|
|
|
for _, attrName := range attrNames {
|
|
|
|
appendSetHashBytes(val.GetAttr(attrName), buf)
|
|
|
|
buf.WriteRune(';')
|
|
|
|
}
|
|
|
|
buf.WriteRune('>')
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
if val.ty.IsTupleType() {
|
|
|
|
buf.WriteRune('<')
|
|
|
|
val.ForEachElement(func(keyVal, elementVal Value) bool {
|
|
|
|
appendSetHashBytes(elementVal, buf)
|
|
|
|
buf.WriteRune(';')
|
|
|
|
return false
|
|
|
|
})
|
|
|
|
buf.WriteRune('>')
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// should never get down here
|
|
|
|
panic("unsupported type in set hash")
|
|
|
|
}
|