terraform/helper/resource/testing_config.go

371 lines
11 KiB
Go
Raw Normal View History

package resource
import (
"bufio"
"bytes"
"errors"
"fmt"
"log"
"sort"
"strings"
"github.com/hashicorp/terraform/addrs"
"github.com/hashicorp/terraform/config"
"github.com/hashicorp/terraform/config/hcl2shim"
"github.com/hashicorp/terraform/states"
"github.com/hashicorp/errwrap"
"github.com/hashicorp/terraform/plans"
"github.com/hashicorp/terraform/terraform"
"github.com/hashicorp/terraform/tfdiags"
)
// testStepConfig runs a config-mode test step
func testStepConfig(
opts terraform.ContextOpts,
state *terraform.State,
step TestStep,
schemas *terraform.Schemas) (*terraform.State, error) {
return testStep(opts, state, step, schemas)
}
func testStep(opts terraform.ContextOpts, state *terraform.State, step TestStep, schemas *terraform.Schemas) (*terraform.State, error) {
if !step.Destroy {
if err := testStepTaint(state, step); err != nil {
return state, err
}
}
cfg, err := testConfig(opts, step)
if err != nil {
return state, err
}
var stepDiags tfdiags.Diagnostics
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 19:33:53 +02:00
// Build the context
opts.Config = cfg
opts.State = terraform.MustShimLegacyState(state)
opts.Destroy = step.Destroy
ctx, stepDiags := terraform.NewContext(&opts)
if stepDiags.HasErrors() {
return state, fmt.Errorf("Error initializing context: %s", stepDiags.Err())
}
if stepDiags := ctx.Validate(); len(stepDiags) > 0 {
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 19:33:53 +02:00
if stepDiags.HasErrors() {
return nil, errwrap.Wrapf("config is invalid: {{err}}", stepDiags.Err())
}
log.Printf("[WARN] Config warnings:\n%s", stepDiags)
}
// Refresh!
newState, stepDiags := ctx.Refresh()
state = mustShimNewState(newState, schemas)
if stepDiags.HasErrors() {
return state, fmt.Errorf("Error refreshing: %s", stepDiags.Err())
}
// If this step is a PlanOnly step, skip over this first Plan and subsequent
// Apply, and use the follow up Plan that checks for perpetual diffs
if !step.PlanOnly {
// Plan!
if p, stepDiags := ctx.Plan(); stepDiags.HasErrors() {
return state, fmt.Errorf("Error planning: %s", stepDiags.Err())
} else {
log.Printf("[WARN] Test: Step plan: %s", legacyPlanComparisonString(newState, p.Changes))
}
// We need to keep a copy of the state prior to destroying
// such that destroy steps can verify their behaviour in the check
// function
stateBeforeApplication := state.DeepCopy()
// Apply the diff, creating real resources.
newState, stepDiags = ctx.Apply()
state = mustShimNewState(newState, schemas)
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 19:33:53 +02:00
if stepDiags.HasErrors() {
return state, fmt.Errorf("Error applying: %s", stepDiags.Err())
}
// Run any configured checks
if step.Check != nil {
if step.Destroy {
if err := step.Check(stateBeforeApplication); err != nil {
return state, fmt.Errorf("Check failed: %s", err)
}
} else {
if err := step.Check(state); err != nil {
return state, fmt.Errorf("Check failed: %s", err)
}
}
}
}
// Now, verify that Plan is now empty and we don't have a perpetual diff issue
// We do this with TWO plans. One without a refresh.
var p *plans.Plan
if p, stepDiags = ctx.Plan(); stepDiags.HasErrors() {
return state, fmt.Errorf("Error on follow-up plan: %s", stepDiags.Err())
}
if !p.Changes.Empty() {
if step.ExpectNonEmptyPlan {
log.Printf("[INFO] Got non-empty plan, as expected:\n\n%s", legacyPlanComparisonString(newState, p.Changes))
} else {
return state, fmt.Errorf(
"After applying this step, the plan was not empty:\n\n%s", legacyPlanComparisonString(newState, p.Changes))
}
}
// And another after a Refresh.
if !step.Destroy || (step.Destroy && !step.PreventPostDestroyRefresh) {
newState, stepDiags = ctx.Refresh()
if stepDiags.HasErrors() {
return state, fmt.Errorf("Error on follow-up refresh: %s", stepDiags.Err())
}
state = mustShimNewState(newState, schemas)
}
if p, stepDiags = ctx.Plan(); stepDiags.HasErrors() {
return state, fmt.Errorf("Error on second follow-up plan: %s", stepDiags.Err())
}
empty := p.Changes.Empty()
// Data resources are tricky because they legitimately get instantiated
// during refresh so that they will be already populated during the
// plan walk. Because of this, if we have any data resources in the
// config we'll end up wanting to destroy them again here. This is
// acceptable and expected, and we'll treat it as "empty" for the
// sake of this testing.
if step.Destroy && !empty {
empty = true
for _, change := range p.Changes.Resources {
if change.Addr.Resource.Resource.Mode != addrs.DataResourceMode {
empty = false
break
}
}
}
if !empty {
if step.ExpectNonEmptyPlan {
log.Printf("[INFO] Got non-empty plan, as expected:\n\n%s", legacyPlanComparisonString(newState, p.Changes))
} else {
return state, fmt.Errorf(
"After applying this step and refreshing, "+
"the plan was not empty:\n\n%s", legacyPlanComparisonString(newState, p.Changes))
}
}
// Made it here, but expected a non-empty plan, fail!
if step.ExpectNonEmptyPlan && empty {
return state, fmt.Errorf("Expected a non-empty plan, but got an empty plan!")
}
// Made it here? Good job test step!
return state, nil
}
// legacyPlanComparisonString produces a string representation of the changes
// from a plan and a given state togther, as was formerly produced by the
// String method of terraform.Plan.
//
// This is here only for compatibility with existing tests that predate our
// new plan and state types, and should not be used in new tests. Instead, use
// a library like "cmp" to do a deep equality check and diff on the two
// data structures.
func legacyPlanComparisonString(state *states.State, changes *plans.Changes) string {
return fmt.Sprintf(
"DIFF:\n\n%s\n\nSTATE:\n\n%s",
legacyDiffComparisonString(changes),
state.String(),
)
}
// legacyDiffComparisonString produces a string representation of the changes
// from a planned changes object, as was formerly produced by the String method
// of terraform.Diff.
//
// This is here only for compatibility with existing tests that predate our
// new plan types, and should not be used in new tests. Instead, use a library
// like "cmp" to do a deep equality check and diff on the two data structures.
func legacyDiffComparisonString(changes *plans.Changes) string {
// The old string representation of a plan was grouped by module, but
// our new plan structure is not grouped in that way and so we'll need
// to preprocess it in order to produce that grouping.
type ResourceChanges struct {
Current *plans.ResourceInstanceChangeSrc
Deposed map[states.DeposedKey]*plans.ResourceInstanceChangeSrc
}
byModule := map[string]map[string]*ResourceChanges{}
resourceKeys := map[string][]string{}
var moduleKeys []string
for _, rc := range changes.Resources {
if rc.Action == plans.NoOp {
// We won't mention no-op changes here at all, since the old plan
// model we are emulating here didn't have such a concept.
continue
}
moduleKey := rc.Addr.Module.String()
if _, exists := byModule[moduleKey]; !exists {
moduleKeys = append(moduleKeys, moduleKey)
byModule[moduleKey] = make(map[string]*ResourceChanges)
}
resourceKey := rc.Addr.Resource.String()
if _, exists := byModule[moduleKey][resourceKey]; !exists {
resourceKeys[moduleKey] = append(resourceKeys[moduleKey], resourceKey)
byModule[moduleKey][resourceKey] = &ResourceChanges{
Deposed: make(map[states.DeposedKey]*plans.ResourceInstanceChangeSrc),
}
}
if rc.DeposedKey == states.NotDeposed {
byModule[moduleKey][resourceKey].Current = rc
} else {
byModule[moduleKey][resourceKey].Deposed[rc.DeposedKey] = rc
}
}
sort.Strings(moduleKeys)
for _, ks := range resourceKeys {
sort.Strings(ks)
}
var buf bytes.Buffer
for _, moduleKey := range moduleKeys {
rcs := byModule[moduleKey]
var mBuf bytes.Buffer
for _, resourceKey := range resourceKeys[moduleKey] {
rc := rcs[resourceKey]
crud := "UPDATE"
if rc.Current != nil {
switch rc.Current.Action {
case plans.DeleteThenCreate:
crud = "DESTROY/CREATE"
case plans.CreateThenDelete:
crud = "CREATE/DESTROY"
case plans.Delete:
crud = "DESTROY"
case plans.Create:
crud = "CREATE"
}
} else {
// We must be working on a deposed object then, in which
// case destroying is the only possible action.
crud = "DESTROY"
}
extra := ""
if rc.Current == nil && len(rc.Deposed) > 0 {
extra = " (deposed only)"
}
fmt.Fprintf(
&mBuf, "%s: %s%s\n",
crud, resourceKey, extra,
)
attrNames := map[string]bool{}
var oldAttrs map[string]string
var newAttrs map[string]string
if rc.Current != nil {
if before := rc.Current.Before; before != nil {
ty, err := before.ImpliedType()
if err == nil {
val, err := before.Decode(ty)
if err == nil {
oldAttrs = hcl2shim.FlatmapValueFromHCL2(val)
for k := range oldAttrs {
attrNames[k] = true
}
}
}
}
if after := rc.Current.After; after != nil {
ty, err := after.ImpliedType()
if err == nil {
val, err := after.Decode(ty)
if err == nil {
newAttrs = hcl2shim.FlatmapValueFromHCL2(val)
for k := range newAttrs {
attrNames[k] = true
}
}
}
}
}
if oldAttrs == nil {
oldAttrs = make(map[string]string)
}
if newAttrs == nil {
newAttrs = make(map[string]string)
}
attrNamesOrder := make([]string, 0, len(attrNames))
keyLen := 0
for n := range attrNames {
attrNamesOrder = append(attrNamesOrder, n)
if len(n) > keyLen {
keyLen = len(n)
}
}
sort.Strings(attrNamesOrder)
for _, attrK := range attrNamesOrder {
v := newAttrs[attrK]
u := oldAttrs[attrK]
if v == config.UnknownVariableValue {
v = "<computed>"
}
// NOTE: we don't support <sensitive> here because we would
// need schema to do that. Excluding sensitive values
// is now done at the UI layer, and so should not be tested
// at the core layer.
updateMsg := ""
// TODO: Mark " (forces new resource)" in updateMsg when appropriate.
fmt.Fprintf(
&mBuf, " %s:%s %#v => %#v%s\n",
attrK,
strings.Repeat(" ", keyLen-len(attrK)),
u, v,
updateMsg,
)
}
}
if moduleKey == "" { // root module
buf.Write(mBuf.Bytes())
buf.WriteByte('\n')
continue
}
fmt.Fprintf(&buf, "%s:\n", moduleKey)
s := bufio.NewScanner(&mBuf)
for s.Scan() {
buf.WriteString(fmt.Sprintf(" %s\n", s.Text()))
}
}
return buf.String()
}
func testStepTaint(state *terraform.State, step TestStep) error {
for _, p := range step.Taint {
m := state.RootModule()
if m == nil {
return errors.New("no state")
}
rs, ok := m.Resources[p]
if !ok {
return fmt.Errorf("resource %q not found in state", p)
}
log.Printf("[WARN] Test: Explicitly tainting resource %q", p)
rs.Taint()
}
return nil
}