terraform/vendor/google.golang.org/grpc/stats/stats.go

312 lines
10 KiB
Go
Raw Normal View History

2017-01-20 16:59:14 +01:00
/*
*
* Copyright 2016 gRPC authors.
2017-01-20 16:59:14 +01:00
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
2017-01-20 16:59:14 +01:00
*
* http://www.apache.org/licenses/LICENSE-2.0
2017-01-20 16:59:14 +01:00
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
2017-01-20 16:59:14 +01:00
*
*/
//go:generate protoc --go_out=plugins=grpc:. grpc_testing/test.proto
2017-01-20 16:59:14 +01:00
// Package stats is for collecting and reporting various network and RPC stats.
// This package is for monitoring purpose only. All fields are read-only.
// All APIs are experimental.
package stats // import "google.golang.org/grpc/stats"
import (
"context"
2017-01-20 16:59:14 +01:00
"net"
"time"
2019-09-09 14:04:58 +02:00
"google.golang.org/grpc/metadata"
2017-01-20 16:59:14 +01:00
)
// RPCStats contains stats information about RPCs.
type RPCStats interface {
isRPCStats()
// IsClient returns true if this RPCStats is from client side.
IsClient() bool
}
// Begin contains stats when an RPC begins.
// FailFast is only valid if this Begin is from client side.
2017-01-20 16:59:14 +01:00
type Begin struct {
// Client is true if this Begin is from client side.
Client bool
// BeginTime is the time when the RPC begins.
BeginTime time.Time
// FailFast indicates if this RPC is failfast.
FailFast bool
}
// IsClient indicates if the stats information is from client side.
2017-01-20 16:59:14 +01:00
func (s *Begin) IsClient() bool { return s.Client }
func (s *Begin) isRPCStats() {}
// InPayload contains the information for an incoming payload.
type InPayload struct {
// Client is true if this InPayload is from client side.
Client bool
// Payload is the payload with original type.
Payload interface{}
// Data is the serialized message payload.
Data []byte
// Length is the length of uncompressed data.
Length int
// WireLength is the length of data on wire (compressed, signed, encrypted).
WireLength int
// RecvTime is the time when the payload is received.
RecvTime time.Time
}
// IsClient indicates if the stats information is from client side.
2017-01-20 16:59:14 +01:00
func (s *InPayload) IsClient() bool { return s.Client }
func (s *InPayload) isRPCStats() {}
// InHeader contains stats when a header is received.
type InHeader struct {
// Client is true if this InHeader is from client side.
Client bool
// WireLength is the wire length of header.
WireLength int
// The following fields are valid only if Client is false.
2017-01-20 16:59:14 +01:00
// FullMethod is the full RPC method string, i.e., /package.service/method.
FullMethod string
// RemoteAddr is the remote address of the corresponding connection.
RemoteAddr net.Addr
// LocalAddr is the local address of the corresponding connection.
LocalAddr net.Addr
// Compression is the compression algorithm used for the RPC.
Compression string
command: Unmanaged providers This adds supports for "unmanaged" providers, or providers with process lifecycles not controlled by Terraform. These providers are assumed to be started before Terraform is launched, and are assumed to shut themselves down after Terraform has finished running. To do this, we must update the go-plugin dependency to v1.3.0, which added support for the "test mode" plugin serving that powers all this. As a side-effect of not needing to manage the process lifecycle anymore, Terraform also no longer needs to worry about the provider's binary, as it won't be used for anything anymore. Because of this, we can disable the init behavior that concerns itself with downloading that provider's binary, checking its version, and otherwise managing the binary. This is all managed on a per-provider basis, so managed providers that Terraform downloads, starts, and stops can be used in the same commands as unmanaged providers. The TF_REATTACH_PROVIDERS environment variable is added, and is a JSON encoding of the provider's address to the information we need to connect to it. This change enables two benefits: first, delve and other debuggers can now be attached to provider server processes, and Terraform can connect. This allows for attaching debuggers to provider processes, which before was difficult to impossible. Second, it allows the SDK test framework to host the provider in the same process as the test driver, while running a production Terraform binary against the provider. This allows for Go's built-in race detector and test coverage tooling to work as expected in provider tests. Unmanaged providers are expected to work in the exact same way as managed providers, with one caveat: Terraform kills provider processes and restarts them once per graph walk, meaning multiple times during most Terraform CLI commands. As unmanaged providers can't be killed by Terraform, and have no visibility into graph walks, unmanaged providers are likely to have differences in how their global mutable state behaves when compared to managed providers. Namely, unmanaged providers are likely to retain global state when managed providers would have reset it. Developers relying on global state should be aware of this.
2020-05-27 02:48:57 +02:00
// Header contains the header metadata received.
Header metadata.MD
2017-01-20 16:59:14 +01:00
}
// IsClient indicates if the stats information is from client side.
2017-01-20 16:59:14 +01:00
func (s *InHeader) IsClient() bool { return s.Client }
func (s *InHeader) isRPCStats() {}
// InTrailer contains stats when a trailer is received.
type InTrailer struct {
// Client is true if this InTrailer is from client side.
Client bool
// WireLength is the wire length of trailer.
WireLength int
command: Unmanaged providers This adds supports for "unmanaged" providers, or providers with process lifecycles not controlled by Terraform. These providers are assumed to be started before Terraform is launched, and are assumed to shut themselves down after Terraform has finished running. To do this, we must update the go-plugin dependency to v1.3.0, which added support for the "test mode" plugin serving that powers all this. As a side-effect of not needing to manage the process lifecycle anymore, Terraform also no longer needs to worry about the provider's binary, as it won't be used for anything anymore. Because of this, we can disable the init behavior that concerns itself with downloading that provider's binary, checking its version, and otherwise managing the binary. This is all managed on a per-provider basis, so managed providers that Terraform downloads, starts, and stops can be used in the same commands as unmanaged providers. The TF_REATTACH_PROVIDERS environment variable is added, and is a JSON encoding of the provider's address to the information we need to connect to it. This change enables two benefits: first, delve and other debuggers can now be attached to provider server processes, and Terraform can connect. This allows for attaching debuggers to provider processes, which before was difficult to impossible. Second, it allows the SDK test framework to host the provider in the same process as the test driver, while running a production Terraform binary against the provider. This allows for Go's built-in race detector and test coverage tooling to work as expected in provider tests. Unmanaged providers are expected to work in the exact same way as managed providers, with one caveat: Terraform kills provider processes and restarts them once per graph walk, meaning multiple times during most Terraform CLI commands. As unmanaged providers can't be killed by Terraform, and have no visibility into graph walks, unmanaged providers are likely to have differences in how their global mutable state behaves when compared to managed providers. Namely, unmanaged providers are likely to retain global state when managed providers would have reset it. Developers relying on global state should be aware of this.
2020-05-27 02:48:57 +02:00
// Trailer contains the trailer metadata received from the server. This
// field is only valid if this InTrailer is from the client side.
Trailer metadata.MD
2017-01-20 16:59:14 +01:00
}
// IsClient indicates if the stats information is from client side.
2017-01-20 16:59:14 +01:00
func (s *InTrailer) IsClient() bool { return s.Client }
func (s *InTrailer) isRPCStats() {}
// OutPayload contains the information for an outgoing payload.
type OutPayload struct {
// Client is true if this OutPayload is from client side.
Client bool
// Payload is the payload with original type.
Payload interface{}
// Data is the serialized message payload.
Data []byte
// Length is the length of uncompressed data.
Length int
// WireLength is the length of data on wire (compressed, signed, encrypted).
WireLength int
// SentTime is the time when the payload is sent.
SentTime time.Time
}
// IsClient indicates if this stats information is from client side.
2017-01-20 16:59:14 +01:00
func (s *OutPayload) IsClient() bool { return s.Client }
func (s *OutPayload) isRPCStats() {}
// OutHeader contains stats when a header is sent.
type OutHeader struct {
// Client is true if this OutHeader is from client side.
Client bool
// The following fields are valid only if Client is true.
2017-01-20 16:59:14 +01:00
// FullMethod is the full RPC method string, i.e., /package.service/method.
FullMethod string
// RemoteAddr is the remote address of the corresponding connection.
RemoteAddr net.Addr
// LocalAddr is the local address of the corresponding connection.
LocalAddr net.Addr
// Compression is the compression algorithm used for the RPC.
Compression string
command: Unmanaged providers This adds supports for "unmanaged" providers, or providers with process lifecycles not controlled by Terraform. These providers are assumed to be started before Terraform is launched, and are assumed to shut themselves down after Terraform has finished running. To do this, we must update the go-plugin dependency to v1.3.0, which added support for the "test mode" plugin serving that powers all this. As a side-effect of not needing to manage the process lifecycle anymore, Terraform also no longer needs to worry about the provider's binary, as it won't be used for anything anymore. Because of this, we can disable the init behavior that concerns itself with downloading that provider's binary, checking its version, and otherwise managing the binary. This is all managed on a per-provider basis, so managed providers that Terraform downloads, starts, and stops can be used in the same commands as unmanaged providers. The TF_REATTACH_PROVIDERS environment variable is added, and is a JSON encoding of the provider's address to the information we need to connect to it. This change enables two benefits: first, delve and other debuggers can now be attached to provider server processes, and Terraform can connect. This allows for attaching debuggers to provider processes, which before was difficult to impossible. Second, it allows the SDK test framework to host the provider in the same process as the test driver, while running a production Terraform binary against the provider. This allows for Go's built-in race detector and test coverage tooling to work as expected in provider tests. Unmanaged providers are expected to work in the exact same way as managed providers, with one caveat: Terraform kills provider processes and restarts them once per graph walk, meaning multiple times during most Terraform CLI commands. As unmanaged providers can't be killed by Terraform, and have no visibility into graph walks, unmanaged providers are likely to have differences in how their global mutable state behaves when compared to managed providers. Namely, unmanaged providers are likely to retain global state when managed providers would have reset it. Developers relying on global state should be aware of this.
2020-05-27 02:48:57 +02:00
// Header contains the header metadata sent.
Header metadata.MD
2017-01-20 16:59:14 +01:00
}
// IsClient indicates if this stats information is from client side.
2017-01-20 16:59:14 +01:00
func (s *OutHeader) IsClient() bool { return s.Client }
func (s *OutHeader) isRPCStats() {}
// OutTrailer contains stats when a trailer is sent.
type OutTrailer struct {
// Client is true if this OutTrailer is from client side.
Client bool
// WireLength is the wire length of trailer.
WireLength int
command: Unmanaged providers This adds supports for "unmanaged" providers, or providers with process lifecycles not controlled by Terraform. These providers are assumed to be started before Terraform is launched, and are assumed to shut themselves down after Terraform has finished running. To do this, we must update the go-plugin dependency to v1.3.0, which added support for the "test mode" plugin serving that powers all this. As a side-effect of not needing to manage the process lifecycle anymore, Terraform also no longer needs to worry about the provider's binary, as it won't be used for anything anymore. Because of this, we can disable the init behavior that concerns itself with downloading that provider's binary, checking its version, and otherwise managing the binary. This is all managed on a per-provider basis, so managed providers that Terraform downloads, starts, and stops can be used in the same commands as unmanaged providers. The TF_REATTACH_PROVIDERS environment variable is added, and is a JSON encoding of the provider's address to the information we need to connect to it. This change enables two benefits: first, delve and other debuggers can now be attached to provider server processes, and Terraform can connect. This allows for attaching debuggers to provider processes, which before was difficult to impossible. Second, it allows the SDK test framework to host the provider in the same process as the test driver, while running a production Terraform binary against the provider. This allows for Go's built-in race detector and test coverage tooling to work as expected in provider tests. Unmanaged providers are expected to work in the exact same way as managed providers, with one caveat: Terraform kills provider processes and restarts them once per graph walk, meaning multiple times during most Terraform CLI commands. As unmanaged providers can't be killed by Terraform, and have no visibility into graph walks, unmanaged providers are likely to have differences in how their global mutable state behaves when compared to managed providers. Namely, unmanaged providers are likely to retain global state when managed providers would have reset it. Developers relying on global state should be aware of this.
2020-05-27 02:48:57 +02:00
// Trailer contains the trailer metadata sent to the client. This
// field is only valid if this OutTrailer is from the server side.
Trailer metadata.MD
2017-01-20 16:59:14 +01:00
}
// IsClient indicates if this stats information is from client side.
2017-01-20 16:59:14 +01:00
func (s *OutTrailer) IsClient() bool { return s.Client }
func (s *OutTrailer) isRPCStats() {}
// End contains stats when an RPC ends.
type End struct {
// Client is true if this End is from client side.
Client bool
// BeginTime is the time when the RPC began.
BeginTime time.Time
2017-01-20 16:59:14 +01:00
// EndTime is the time when the RPC ends.
EndTime time.Time
2019-09-09 14:04:58 +02:00
// Trailer contains the trailer metadata received from the server. This
// field is only valid if this End is from the client side.
command: Unmanaged providers This adds supports for "unmanaged" providers, or providers with process lifecycles not controlled by Terraform. These providers are assumed to be started before Terraform is launched, and are assumed to shut themselves down after Terraform has finished running. To do this, we must update the go-plugin dependency to v1.3.0, which added support for the "test mode" plugin serving that powers all this. As a side-effect of not needing to manage the process lifecycle anymore, Terraform also no longer needs to worry about the provider's binary, as it won't be used for anything anymore. Because of this, we can disable the init behavior that concerns itself with downloading that provider's binary, checking its version, and otherwise managing the binary. This is all managed on a per-provider basis, so managed providers that Terraform downloads, starts, and stops can be used in the same commands as unmanaged providers. The TF_REATTACH_PROVIDERS environment variable is added, and is a JSON encoding of the provider's address to the information we need to connect to it. This change enables two benefits: first, delve and other debuggers can now be attached to provider server processes, and Terraform can connect. This allows for attaching debuggers to provider processes, which before was difficult to impossible. Second, it allows the SDK test framework to host the provider in the same process as the test driver, while running a production Terraform binary against the provider. This allows for Go's built-in race detector and test coverage tooling to work as expected in provider tests. Unmanaged providers are expected to work in the exact same way as managed providers, with one caveat: Terraform kills provider processes and restarts them once per graph walk, meaning multiple times during most Terraform CLI commands. As unmanaged providers can't be killed by Terraform, and have no visibility into graph walks, unmanaged providers are likely to have differences in how their global mutable state behaves when compared to managed providers. Namely, unmanaged providers are likely to retain global state when managed providers would have reset it. Developers relying on global state should be aware of this.
2020-05-27 02:48:57 +02:00
// Deprecated: use Trailer in InTrailer instead.
2019-09-09 14:04:58 +02:00
Trailer metadata.MD
// Error is the error the RPC ended with. It is an error generated from
// status.Status and can be converted back to status.Status using
// status.FromError if non-nil.
2017-01-20 16:59:14 +01:00
Error error
}
// IsClient indicates if this is from client side.
func (s *End) IsClient() bool { return s.Client }
func (s *End) isRPCStats() {}
// ConnStats contains stats information about connections.
type ConnStats interface {
isConnStats()
// IsClient returns true if this ConnStats is from client side.
IsClient() bool
}
// ConnBegin contains the stats of a connection when it is established.
type ConnBegin struct {
// Client is true if this ConnBegin is from client side.
Client bool
}
// IsClient indicates if this is from client side.
func (s *ConnBegin) IsClient() bool { return s.Client }
func (s *ConnBegin) isConnStats() {}
// ConnEnd contains the stats of a connection when it ends.
type ConnEnd struct {
// Client is true if this ConnEnd is from client side.
Client bool
}
// IsClient indicates if this is from client side.
func (s *ConnEnd) IsClient() bool { return s.Client }
func (s *ConnEnd) isConnStats() {}
type incomingTagsKey struct{}
type outgoingTagsKey struct{}
// SetTags attaches stats tagging data to the context, which will be sent in
// the outgoing RPC with the header grpc-tags-bin. Subsequent calls to
// SetTags will overwrite the values from earlier calls.
//
// NOTE: this is provided only for backward compatibility with existing clients
// and will likely be removed in an upcoming release. New uses should transmit
// this type of data using metadata with a different, non-reserved (i.e. does
// not begin with "grpc-") header name.
func SetTags(ctx context.Context, b []byte) context.Context {
return context.WithValue(ctx, outgoingTagsKey{}, b)
}
// Tags returns the tags from the context for the inbound RPC.
//
// NOTE: this is provided only for backward compatibility with existing clients
// and will likely be removed in an upcoming release. New uses should transmit
// this type of data using metadata with a different, non-reserved (i.e. does
// not begin with "grpc-") header name.
func Tags(ctx context.Context) []byte {
b, _ := ctx.Value(incomingTagsKey{}).([]byte)
return b
}
// SetIncomingTags attaches stats tagging data to the context, to be read by
// the application (not sent in outgoing RPCs).
//
// This is intended for gRPC-internal use ONLY.
func SetIncomingTags(ctx context.Context, b []byte) context.Context {
return context.WithValue(ctx, incomingTagsKey{}, b)
}
// OutgoingTags returns the tags from the context for the outbound RPC.
//
// This is intended for gRPC-internal use ONLY.
func OutgoingTags(ctx context.Context) []byte {
b, _ := ctx.Value(outgoingTagsKey{}).([]byte)
return b
}
type incomingTraceKey struct{}
type outgoingTraceKey struct{}
// SetTrace attaches stats tagging data to the context, which will be sent in
// the outgoing RPC with the header grpc-trace-bin. Subsequent calls to
// SetTrace will overwrite the values from earlier calls.
//
// NOTE: this is provided only for backward compatibility with existing clients
// and will likely be removed in an upcoming release. New uses should transmit
// this type of data using metadata with a different, non-reserved (i.e. does
// not begin with "grpc-") header name.
func SetTrace(ctx context.Context, b []byte) context.Context {
return context.WithValue(ctx, outgoingTraceKey{}, b)
}
// Trace returns the trace from the context for the inbound RPC.
//
// NOTE: this is provided only for backward compatibility with existing clients
// and will likely be removed in an upcoming release. New uses should transmit
// this type of data using metadata with a different, non-reserved (i.e. does
// not begin with "grpc-") header name.
func Trace(ctx context.Context) []byte {
b, _ := ctx.Value(incomingTraceKey{}).([]byte)
return b
}
// SetIncomingTrace attaches stats tagging data to the context, to be read by
// the application (not sent in outgoing RPCs). It is intended for
// gRPC-internal use.
func SetIncomingTrace(ctx context.Context, b []byte) context.Context {
return context.WithValue(ctx, incomingTraceKey{}, b)
}
// OutgoingTrace returns the trace from the context for the outbound RPC. It is
// intended for gRPC-internal use.
func OutgoingTrace(ctx context.Context) []byte {
b, _ := ctx.Value(outgoingTraceKey{}).([]byte)
return b
}