terraform/dag/dag.go

349 lines
8.7 KiB
Go
Raw Normal View History

package dag
2015-02-04 16:10:32 +01:00
import (
"fmt"
"sort"
2015-02-05 01:38:38 +01:00
"strings"
2015-02-04 16:29:03 +01:00
"sync"
"github.com/hashicorp/go-multierror"
2015-02-04 16:10:32 +01:00
)
// AcyclicGraph is a specialization of Graph that cannot have cycles. With
// this property, we get the property of sane graph traversal.
type AcyclicGraph struct {
2015-02-04 16:10:32 +01:00
Graph
}
// WalkFunc is the callback used for walking the graph.
2015-02-09 02:06:17 +01:00
type WalkFunc func(Vertex) error
// DepthWalkFunc is a walk function that also receives the current depth of the
// walk as an argument
type DepthWalkFunc func(Vertex, int) error
// Returns a Set that includes every Vertex yielded by walking down from the
// provided starting Vertex v.
func (g *AcyclicGraph) Ancestors(v Vertex) (*Set, error) {
s := new(Set)
start := AsVertexList(g.DownEdges(v))
memoFunc := func(v Vertex, d int) error {
s.Add(v)
return nil
}
if err := g.DepthFirstWalk(start, memoFunc); err != nil {
return nil, err
}
return s, nil
}
// Returns a Set that includes every Vertex yielded by walking up from the
// provided starting Vertex v.
func (g *AcyclicGraph) Descendents(v Vertex) (*Set, error) {
s := new(Set)
start := AsVertexList(g.UpEdges(v))
memoFunc := func(v Vertex, d int) error {
s.Add(v)
return nil
}
if err := g.ReverseDepthFirstWalk(start, memoFunc); err != nil {
return nil, err
}
return s, nil
}
2015-02-04 16:10:32 +01:00
// Root returns the root of the DAG, or an error.
//
// Complexity: O(V)
func (g *AcyclicGraph) Root() (Vertex, error) {
roots := make([]Vertex, 0, 1)
for _, v := range g.Vertices() {
if g.UpEdges(v).Len() == 0 {
roots = append(roots, v)
}
}
if len(roots) > 1 {
// TODO(mitchellh): make this error message a lot better
return nil, fmt.Errorf("multiple roots: %#v", roots)
}
if len(roots) == 0 {
return nil, fmt.Errorf("no roots found")
}
return roots[0], nil
}
2015-02-28 04:12:19 +01:00
// TransitiveReduction performs the transitive reduction of graph g in place.
// The transitive reduction of a graph is a graph with as few edges as
// possible with the same reachability as the original graph. This means
// that if there are three nodes A => B => C, and A connects to both
// B and C, and B connects to C, then the transitive reduction is the
// same graph with only a single edge between A and B, and a single edge
// between B and C.
//
// The graph must be valid for this operation to behave properly. If
// Validate() returns an error, the behavior is undefined and the results
// will likely be unexpected.
//
// Complexity: O(V(V+E)), or asymptotically O(VE)
func (g *AcyclicGraph) TransitiveReduction() {
2015-02-28 04:37:59 +01:00
// For each vertex u in graph g, do a DFS starting from each vertex
// v such that the edge (u,v) exists (v is a direct descendant of u).
//
// For each v-prime reachable from v, remove the edge (u, v-prime).
for _, u := range g.Vertices() {
uTargets := g.DownEdges(u)
vs := AsVertexList(g.DownEdges(u))
2015-02-28 04:12:19 +01:00
g.DepthFirstWalk(vs, func(v Vertex, d int) error {
2015-02-28 04:37:59 +01:00
shared := uTargets.Intersection(g.DownEdges(v))
for _, vPrime := range AsVertexList(shared) {
2015-02-28 04:37:59 +01:00
g.RemoveEdge(BasicEdge(u, vPrime))
2015-02-28 04:12:19 +01:00
}
2015-02-28 04:37:59 +01:00
return nil
})
}
2015-02-28 04:12:19 +01:00
}
2015-02-04 16:36:33 +01:00
// Validate validates the DAG. A DAG is valid if it has a single root
// with no cycles.
func (g *AcyclicGraph) Validate() error {
if _, err := g.Root(); err != nil {
return err
}
// Look for cycles of more than 1 component
var err error
cycles := g.Cycles()
2015-02-04 16:36:33 +01:00
if len(cycles) > 0 {
for _, cycle := range cycles {
2015-02-05 01:38:38 +01:00
cycleStr := make([]string, len(cycle))
for j, vertex := range cycle {
cycleStr[j] = VertexName(vertex)
}
err = multierror.Append(err, fmt.Errorf(
"Cycle: %s", strings.Join(cycleStr, ", ")))
2015-02-05 01:38:38 +01:00
}
}
2015-02-05 01:38:38 +01:00
// Look for cycles to self
for _, e := range g.Edges() {
if e.Source() == e.Target() {
err = multierror.Append(err, fmt.Errorf(
"Self reference: %s", VertexName(e.Source())))
}
2015-02-04 16:36:33 +01:00
}
return err
2015-02-04 16:36:33 +01:00
}
func (g *AcyclicGraph) Cycles() [][]Vertex {
var cycles [][]Vertex
for _, cycle := range StronglyConnected(&g.Graph) {
if len(cycle) > 1 {
cycles = append(cycles, cycle)
}
}
return cycles
}
// Walk walks the graph, calling your callback as each node is visited.
2015-02-09 02:06:17 +01:00
// This will walk nodes in parallel if it can. Because the walk is done
// in parallel, the error returned will be a multierror.
2015-02-04 16:29:03 +01:00
func (g *AcyclicGraph) Walk(cb WalkFunc) error {
2015-02-05 01:38:38 +01:00
// Cache the vertices since we use it multiple times
vertices := g.Vertices()
2015-02-04 16:29:03 +01:00
// Build the waitgroup that signals when we're done
var wg sync.WaitGroup
2015-02-05 01:38:38 +01:00
wg.Add(len(vertices))
2015-02-04 16:29:03 +01:00
doneCh := make(chan struct{})
go func() {
defer close(doneCh)
wg.Wait()
}()
2015-02-05 01:38:38 +01:00
// The map of channels to watch to wait for vertices to finish
vertMap := make(map[Vertex]chan struct{})
for _, v := range vertices {
vertMap[v] = make(chan struct{})
2015-02-04 16:29:03 +01:00
}
2015-02-09 02:06:17 +01:00
// The map of whether a vertex errored or not during the walk
var errLock sync.Mutex
var errs error
errMap := make(map[Vertex]bool)
2015-02-05 01:38:38 +01:00
for _, v := range vertices {
2015-02-09 02:06:17 +01:00
// Build our list of dependencies and the list of channels to
// wait on until we start executing for this vertex.
deps := AsVertexList(g.DownEdges(v))
2015-02-05 01:38:38 +01:00
depChs := make([]<-chan struct{}, len(deps))
for i, dep := range deps {
depChs[i] = vertMap[dep]
2015-02-05 01:38:38 +01:00
}
2015-02-04 16:29:03 +01:00
2015-02-09 02:06:17 +01:00
// Get our channel so that we can close it when we're done
2015-02-05 01:38:38 +01:00
ourCh := vertMap[v]
2015-02-04 16:29:03 +01:00
2015-02-09 02:06:17 +01:00
// Start the goroutine to wait for our dependencies
readyCh := make(chan bool)
go func(deps []Vertex, chs []<-chan struct{}, readyCh chan<- bool) {
// First wait for all the dependencies
for _, ch := range chs {
<-ch
}
// Then, check the map to see if any of our dependencies failed
errLock.Lock()
defer errLock.Unlock()
for _, dep := range deps {
if errMap[dep] {
readyCh <- false
return
}
}
readyCh <- true
}(deps, depChs, readyCh)
// Start the goroutine that executes
go func(v Vertex, doneCh chan<- struct{}, readyCh <-chan bool) {
2015-02-05 01:38:38 +01:00
defer close(doneCh)
defer wg.Done()
2015-02-04 16:29:03 +01:00
2015-02-09 02:06:17 +01:00
var err error
if ready := <-readyCh; ready {
err = cb(v)
2015-02-05 01:38:38 +01:00
}
2015-02-04 16:29:03 +01:00
2015-02-09 02:06:17 +01:00
errLock.Lock()
defer errLock.Unlock()
if err != nil {
errMap[v] = true
errs = multierror.Append(errs, err)
}
}(v, ourCh, readyCh)
2015-02-04 16:29:03 +01:00
}
2015-02-05 01:38:38 +01:00
<-doneCh
2015-02-09 02:06:17 +01:00
return errs
}
2015-02-28 04:12:19 +01:00
// simple convenience helper for converting a dag.Set to a []Vertex
func AsVertexList(s *Set) []Vertex {
rawList := s.List()
vertexList := make([]Vertex, len(rawList))
for i, raw := range rawList {
vertexList[i] = raw.(Vertex)
}
return vertexList
}
type vertexAtDepth struct {
Vertex Vertex
Depth int
}
2015-02-28 04:12:19 +01:00
// depthFirstWalk does a depth-first walk of the graph starting from
// the vertices in start. This is not exported now but it would make sense
// to export this publicly at some point.
func (g *AcyclicGraph) DepthFirstWalk(start []Vertex, f DepthWalkFunc) error {
2015-02-28 04:12:19 +01:00
seen := make(map[Vertex]struct{})
frontier := make([]*vertexAtDepth, len(start))
for i, v := range start {
frontier[i] = &vertexAtDepth{
Vertex: v,
Depth: 0,
}
}
2015-02-28 04:12:19 +01:00
for len(frontier) > 0 {
// Pop the current vertex
n := len(frontier)
current := frontier[n-1]
frontier = frontier[:n-1]
// Check if we've seen this already and return...
if _, ok := seen[current.Vertex]; ok {
2015-02-28 04:12:19 +01:00
continue
}
seen[current.Vertex] = struct{}{}
2015-02-28 04:12:19 +01:00
// Visit the current node
if err := f(current.Vertex, current.Depth); err != nil {
2015-02-28 04:12:19 +01:00
return err
}
// Visit targets of this in a consistent order.
targets := AsVertexList(g.DownEdges(current.Vertex))
sort.Sort(byVertexName(targets))
for _, t := range targets {
frontier = append(frontier, &vertexAtDepth{
Vertex: t,
Depth: current.Depth + 1,
})
2015-02-28 04:12:19 +01:00
}
}
return nil
}
// reverseDepthFirstWalk does a depth-first walk _up_ the graph starting from
// the vertices in start.
func (g *AcyclicGraph) ReverseDepthFirstWalk(start []Vertex, f DepthWalkFunc) error {
seen := make(map[Vertex]struct{})
frontier := make([]*vertexAtDepth, len(start))
for i, v := range start {
frontier[i] = &vertexAtDepth{
Vertex: v,
Depth: 0,
}
}
for len(frontier) > 0 {
// Pop the current vertex
n := len(frontier)
current := frontier[n-1]
frontier = frontier[:n-1]
// Check if we've seen this already and return...
if _, ok := seen[current.Vertex]; ok {
continue
}
seen[current.Vertex] = struct{}{}
// Visit the current node
if err := f(current.Vertex, current.Depth); err != nil {
return err
}
// Visit targets of this in a consistent order.
targets := AsVertexList(g.UpEdges(current.Vertex))
sort.Sort(byVertexName(targets))
for _, t := range targets {
frontier = append(frontier, &vertexAtDepth{
Vertex: t,
Depth: current.Depth + 1,
})
}
}
return nil
}
// byVertexName implements sort.Interface so a list of Vertices can be sorted
// consistently by their VertexName
type byVertexName []Vertex
func (b byVertexName) Len() int { return len(b) }
func (b byVertexName) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
func (b byVertexName) Less(i, j int) bool {
return VertexName(b[i]) < VertexName(b[j])
}