terraform/internal/repl/session_test.go

446 lines
10 KiB
Go
Raw Normal View History

2016-11-14 07:04:21 +01:00
package repl
import (
"flag"
"os"
2016-11-14 07:04:21 +01:00
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/zclconf/go-cty/cty"
"github.com/hashicorp/terraform/internal/addrs"
"github.com/hashicorp/terraform/internal/configs/configschema"
command: "terraform init" can partially initialize for 0.12upgrade There are a few constructs from 0.11 and prior that cause 0.12 parsing to fail altogether, which previously created a chicken/egg problem because we need to install the providers in order to run "terraform 0.12upgrade" and thus fix the problem. This changes "terraform init" to use the new "early configuration" loader for module and provider installation. This is built on the more permissive parser in the terraform-config-inspect package, and so it allows us to read out the top-level blocks from the configuration while accepting legacy HCL syntax. In the long run this will let us do version compatibility detection before attempting a "real" config load, giving us better error messages for any future syntax additions, but in the short term the key thing is that it allows us to install the dependencies even if the configuration isn't fully valid. Because backend init still requires full configuration, this introduces a new mode of terraform init where it detects heuristically if it seems like we need to do a configuration upgrade and does a partial init if so, before finally directing the user to run "terraform 0.12upgrade" before running any other commands. The heuristic here is based on two assumptions: - If the "early" loader finds no errors but the normal loader does, the configuration is likely to be valid for Terraform 0.11 but not 0.12. - If there's already a version constraint in the configuration that excludes Terraform versions prior to v0.12 then the configuration is probably _already_ upgraded and so it's just a normal syntax error, even if the early loader didn't detect it. Once the upgrade process is removed in 0.13.0 (users will be required to go stepwise 0.11 -> 0.12 -> 0.13 to upgrade after that), some of this can be simplified to remove that special mode, but the idea of doing the dependency version checks against the liberal parser will remain valuable to increase our chances of reporting version-based incompatibilities rather than syntax errors as we add new features in future.
2019-01-14 20:11:00 +01:00
"github.com/hashicorp/terraform/internal/initwd"
"github.com/hashicorp/terraform/internal/providers"
"github.com/hashicorp/terraform/internal/states"
"github.com/hashicorp/terraform/internal/terraform"
_ "github.com/hashicorp/terraform/internal/logging"
2016-11-14 07:04:21 +01:00
)
func TestMain(m *testing.M) {
flag.Parse()
os.Exit(m.Run())
}
2016-11-14 07:04:21 +01:00
func TestSession_basicState(t *testing.T) {
state := states.BuildState(func(s *states.SyncState) {
s.SetResourceInstanceCurrent(
addrs.Resource{
Mode: addrs.ManagedResourceMode,
Type: "test_instance",
Name: "foo",
}.Instance(addrs.NoKey).Absolute(addrs.RootModuleInstance),
&states.ResourceInstanceObjectSrc{
Status: states.ObjectReady,
AttrsJSON: []byte(`{"id":"bar"}`),
2016-11-14 07:04:21 +01:00
},
addrs.AbsProviderConfig{
Provider: addrs.NewDefaultProvider("test"),
Module: addrs.RootModule,
},
)
s.SetResourceInstanceCurrent(
addrs.Resource{
Mode: addrs.ManagedResourceMode,
Type: "test_instance",
Name: "foo",
}.Instance(addrs.NoKey).Absolute(addrs.RootModuleInstance.Child("module", addrs.NoKey)),
&states.ResourceInstanceObjectSrc{
Status: states.ObjectReady,
AttrsJSON: []byte(`{"id":"bar"}`),
},
addrs.AbsProviderConfig{
Provider: addrs.NewDefaultProvider("test"),
Module: addrs.RootModule,
},
)
})
2016-11-14 07:04:21 +01:00
t.Run("basic", func(t *testing.T) {
testSession(t, testSessionTest{
State: state,
Inputs: []testSessionInput{
{
Input: "test_instance.foo.id",
Output: `"bar"`,
2016-11-14 07:04:21 +01:00
},
},
})
})
t.Run("missing resource", func(t *testing.T) {
testSession(t, testSessionTest{
State: state,
Inputs: []testSessionInput{
{
Input: "test_instance.bar.id",
Error: true,
core: Static-validate resource references against schemas In the initial move to HCL2 we started relying only on full expression evaluation to catch attribute errors, but that's not sufficient for resource attributes in practice because during validation we can't know yet whether a resource reference evaluates to a single object or to a list of objects (if count is set). To address this, here we reinstate some static validation of resource references by analyzing directly the reference objects, disregarding any instance index if present, and produce errors if the remaining subsequent traversal steps do not correspond to items within the resource type schema. This also allows us to produce some more specialized error messages for certain situations. In particular, we can recognize a reference like aws_instance.foo.count, which in 0.11 and prior was a weird special case for determining the count value of a resource block, and offer a helpful error showing the new length(aws_instance.foo) usage pattern. This eventually delegates to the static traversal validation logic that was added to the configschema package in a previous commit, which also includes some specialized error messages that distinguish between attributes and block types in the schema so that the errors relate more directly to constructs the user can see in the configuration. In future we could potentially move more of the checks from the dynamic schema construction step to the static validation step, but resources are the reference type that most needs this immediately due to the ambiguity caused by the instance indexing syntax. We can safely refactor other reference types to be statically validated in later releases. This is verified by two pre-existing context validate tests which we temporarily disabled during earlier work (now re-enabled) and also by a new validate test aimed specifically at the special case for the "count" attribute.
2018-11-21 02:25:05 +01:00
ErrorContains: `A managed resource "test_instance" "bar" has not been declared`,
2016-11-14 07:04:21 +01:00
},
},
})
})
t.Run("missing module", func(t *testing.T) {
testSession(t, testSessionTest{
State: state,
Inputs: []testSessionInput{
{
Input: "module.child",
Error: true,
ErrorContains: `No module call named "child" is declared in the root module.`,
},
},
})
})
t.Run("missing module referencing just one output", func(t *testing.T) {
testSession(t, testSessionTest{
State: state,
Inputs: []testSessionInput{
{
Input: "module.child.foo",
Error: true,
ErrorContains: `No module call named "child" is declared in the root module.`,
},
},
})
})
t.Run("missing module output", func(t *testing.T) {
testSession(t, testSessionTest{
State: state,
Inputs: []testSessionInput{
{
Input: "module.module.foo",
Error: true,
ErrorContains: `Unsupported attribute: This object does not have an attribute named "foo"`,
},
},
})
})
t.Run("type function", func(t *testing.T) {
testSession(t, testSessionTest{
State: state,
Inputs: []testSessionInput{
{
Input: "type(test_instance.foo)",
Output: `object({
id: string,
})`,
},
},
})
})
2016-11-14 07:04:21 +01:00
}
func TestSession_stateless(t *testing.T) {
t.Run("exit", func(t *testing.T) {
testSession(t, testSessionTest{
Inputs: []testSessionInput{
{
Input: "exit",
Exit: true,
2016-11-14 07:04:21 +01:00
},
},
})
})
t.Run("help", func(t *testing.T) {
testSession(t, testSessionTest{
Inputs: []testSessionInput{
{
Input: "help",
OutputContains: "allows you to",
},
},
})
})
t.Run("help with spaces", func(t *testing.T) {
testSession(t, testSessionTest{
Inputs: []testSessionInput{
{
Input: "help ",
OutputContains: "allows you to",
},
},
})
})
t.Run("basic math", func(t *testing.T) {
testSession(t, testSessionTest{
Inputs: []testSessionInput{
{
Input: "1 + 5",
Output: "6",
},
},
})
})
t.Run("missing resource", func(t *testing.T) {
testSession(t, testSessionTest{
Inputs: []testSessionInput{
{
Input: "test_instance.bar.id",
Error: true,
ErrorContains: `resource "test_instance" "bar" has not been declared`,
2016-11-14 07:04:21 +01:00
},
},
})
})
t.Run("type function", func(t *testing.T) {
testSession(t, testSessionTest{
Inputs: []testSessionInput{
{
Input: `type("foo")`,
Output: "string",
},
},
})
})
t.Run("type type is type", func(t *testing.T) {
testSession(t, testSessionTest{
Inputs: []testSessionInput{
{
Input: `type(type("foo"))`,
Output: "type",
},
},
})
})
t.Run("interpolating type with strings is not possible", func(t *testing.T) {
testSession(t, testSessionTest{
Inputs: []testSessionInput{
{
Input: `"quin${type([])}"`,
Error: true,
ErrorContains: "Invalid template interpolation value",
},
},
})
})
t.Run("type function cannot be used in expressions", func(t *testing.T) {
testSession(t, testSessionTest{
Inputs: []testSessionInput{
{
Input: `[for i in [1, "two", true]: type(i)]`,
Output: "",
Error: true,
ErrorContains: "Invalid use of type function",
},
},
})
})
t.Run("type equality checks are not permitted", func(t *testing.T) {
testSession(t, testSessionTest{
Inputs: []testSessionInput{
{
Input: `type("foo") == type("bar")`,
Output: "",
Error: true,
ErrorContains: "Invalid use of type function",
},
},
})
})
2016-11-14 07:04:21 +01:00
}
func testSession(t *testing.T, test testSessionTest) {
core: Static-validate resource references against schemas In the initial move to HCL2 we started relying only on full expression evaluation to catch attribute errors, but that's not sufficient for resource attributes in practice because during validation we can't know yet whether a resource reference evaluates to a single object or to a list of objects (if count is set). To address this, here we reinstate some static validation of resource references by analyzing directly the reference objects, disregarding any instance index if present, and produce errors if the remaining subsequent traversal steps do not correspond to items within the resource type schema. This also allows us to produce some more specialized error messages for certain situations. In particular, we can recognize a reference like aws_instance.foo.count, which in 0.11 and prior was a weird special case for determining the count value of a resource block, and offer a helpful error showing the new length(aws_instance.foo) usage pattern. This eventually delegates to the static traversal validation logic that was added to the configschema package in a previous commit, which also includes some specialized error messages that distinguish between attributes and block types in the schema so that the errors relate more directly to constructs the user can see in the configuration. In future we could potentially move more of the checks from the dynamic schema construction step to the static validation step, but resources are the reference type that most needs this immediately due to the ambiguity caused by the instance indexing syntax. We can safely refactor other reference types to be statically validated in later releases. This is verified by two pre-existing context validate tests which we temporarily disabled during earlier work (now re-enabled) and also by a new validate test aimed specifically at the special case for the "count" attribute.
2018-11-21 02:25:05 +01:00
t.Helper()
p := &terraform.MockProvider{}
p.GetProviderSchemaResponse = &providers.GetProviderSchemaResponse{
2021-01-12 22:13:10 +01:00
ResourceTypes: map[string]providers.Schema{
"test_instance": {
2021-01-12 22:13:10 +01:00
Block: &configschema.Block{
Attributes: map[string]*configschema.Attribute{
"id": {Type: cty.String, Computed: true},
},
},
},
},
}
config, _, cleanup, configDiags := initwd.LoadConfigForTests(t, "testdata/config-fixture")
defer cleanup()
if configDiags.HasErrors() {
t.Fatalf("unexpected problems loading config: %s", configDiags.Err())
}
2016-11-14 07:04:21 +01:00
// Build the TF context
ctx, diags := terraform.NewContext(&terraform.ContextOpts{
Providers: map[addrs.Provider]providers.Factory{
addrs.NewDefaultProvider("test"): providers.FactoryFixed(p),
},
2016-11-14 07:04:21 +01:00
})
if diags.HasErrors() {
t.Fatalf("failed to create context: %s", diags.Err())
}
core: Functional-style API for terraform.Context Previously terraform.Context was built in an unfortunate way where all of the data was provided up front in terraform.NewContext and then mutated directly by subsequent operations. That made the data flow hard to follow, commonly leading to bugs, and also meant that we were forced to take various actions too early in terraform.NewContext, rather than waiting until a more appropriate time during an operation. This (enormous) commit changes terraform.Context so that its fields are broadly just unchanging data about the execution context (current workspace name, available plugins, etc) whereas the main data Terraform works with arrives via individual method arguments and is returned in return values. Specifically, this means that terraform.Context no longer "has-a" config, state, and "planned changes", instead holding on to those only temporarily during an operation. The caller is responsible for propagating the outcome of one step into the next step so that the data flow between operations is actually visible. However, since that's a change to the main entry points in the "terraform" package, this commit also touches every file in the codebase which interacted with those APIs. Most of the noise here is in updating tests to take the same actions using the new API style, but this also affects the main-code callers in the backends and in the command package. My goal here was to refactor without changing observable behavior, but in practice there are a couple externally-visible behavior variations here that seemed okay in service of the broader goal: - The "terraform graph" command is no longer hooked directly into the core graph builders, because that's no longer part of the public API. However, I did include a couple new Context functions whose contract is to produce a UI-oriented graph, and _for now_ those continue to return the physical graph we use for those operations. There's no exported API for generating the "validate" and "eval" graphs, because neither is particularly interesting in its own right, and so "terraform graph" no longer supports those graph types. - terraform.NewContext no longer has the responsibility for collecting all of the provider schemas up front. Instead, we wait until we need them. However, that means that some of our error messages now have a slightly different shape due to unwinding through a differently-shaped call stack. As of this commit we also end up reloading the schemas multiple times in some cases, which is functionally acceptable but likely represents a performance regression. I intend to rework this to use caching, but I'm saving that for a later commit because this one is big enough already. The proximal reason for this change is to resolve the chicken/egg problem whereby there was previously no single point where we could apply "moved" statements to the previous run state before creating a plan. With this change in place, we can now do that as part of Context.Plan, prior to forking the input state into the three separate state artifacts we use during planning. However, this is at least the third project in a row where the previous API design led to piling more functionality into terraform.NewContext and then working around the incorrect order of operations that produces, so I intend that by paying the cost/risk of this large diff now we can in turn reduce the cost/risk of future projects that relate to our main workflow actions.
2021-08-24 21:06:38 +02:00
state := test.State
if state == nil {
state = states.NewState()
}
scope, diags := ctx.Eval(config, state, addrs.RootModuleInstance, &terraform.EvalOpts{})
if diags.HasErrors() {
t.Fatalf("failed to create scope: %s", diags.Err())
2016-11-14 07:04:21 +01:00
}
// Ensure that any console-only functions are available
scope.ConsoleMode = true
2016-11-14 07:04:21 +01:00
// Build the session
s := &Session{
Scope: scope,
2016-11-14 07:04:21 +01:00
}
// Test the inputs. We purposely don't use subtests here because
// the inputs don't represent subtests, but a sequence of stateful
2016-11-14 07:04:21 +01:00
// operations.
for _, input := range test.Inputs {
result, exit, diags := s.Handle(input.Input)
if exit != input.Exit {
t.Fatalf("incorrect 'exit' result %t; want %t", exit, input.Exit)
}
if (diags.HasErrors()) != input.Error {
t.Fatalf("%q: unexpected errors: %s", input.Input, diags.Err())
2016-11-14 07:04:21 +01:00
}
if diags.HasErrors() {
2016-11-14 07:04:21 +01:00
if input.ErrorContains != "" {
if !strings.Contains(diags.Err().Error(), input.ErrorContains) {
2016-11-14 07:04:21 +01:00
t.Fatalf(
"%q: diagnostics should contain: %q\n\n%s",
input.Input, input.ErrorContains, diags.Err(),
)
2016-11-14 07:04:21 +01:00
}
}
continue
}
if input.Output != "" && result != input.Output {
t.Fatalf(
"%q: expected:\n\n%s\n\ngot:\n\n%s",
input.Input, input.Output, result)
}
if input.OutputContains != "" && !strings.Contains(result, input.OutputContains) {
t.Fatalf(
"%q: expected contains:\n\n%s\n\ngot:\n\n%s",
input.Input, input.OutputContains, result)
}
}
}
type testSessionTest struct {
State *states.State // State to use
Module string // Module name in testdata to load
2016-11-14 07:04:21 +01:00
// Inputs are the list of test inputs that are run in order.
// Each input can test the output of each step.
Inputs []testSessionInput
}
// testSessionInput is a single input to test for a session.
type testSessionInput struct {
Input string // Input string
Output string // Exact output string to check
OutputContains string
Error bool // Error is true if error is expected
Exit bool // Exit is true if exiting is expected
2016-11-14 07:04:21 +01:00
ErrorContains string
}
func TestTypeString(t *testing.T) {
tests := []struct {
Input cty.Value
Want string
}{
// Primititves
{
cty.StringVal("a"),
"string",
},
{
cty.NumberIntVal(42),
"number",
},
{
cty.BoolVal(true),
"bool",
},
// Collections
{
cty.EmptyObjectVal,
`object({})`,
},
{
cty.EmptyTupleVal,
`tuple([])`,
},
{
cty.ListValEmpty(cty.String),
`list(string)`,
},
{
cty.MapValEmpty(cty.String),
`map(string)`,
},
{
cty.SetValEmpty(cty.String),
`set(string)`,
},
{
cty.ListVal([]cty.Value{cty.StringVal("a")}),
`list(string)`,
},
{
cty.ListVal([]cty.Value{cty.ListVal([]cty.Value{cty.NumberIntVal(42)})}),
`list(list(number))`,
},
{
cty.ListVal([]cty.Value{cty.MapValEmpty(cty.String)}),
`list(map(string))`,
},
{
cty.ListVal([]cty.Value{cty.ObjectVal(map[string]cty.Value{
"foo": cty.StringVal("bar"),
})}),
"list(\n object({\n foo: string,\n }),\n)",
},
// Unknowns and Nulls
{
cty.UnknownVal(cty.String),
"string",
},
{
cty.NullVal(cty.Object(map[string]cty.Type{
"foo": cty.String,
})),
"object({\n foo: string,\n})",
},
{ // irrelevant marks do nothing
cty.ListVal([]cty.Value{cty.ObjectVal(map[string]cty.Value{
"foo": cty.StringVal("bar").Mark("ignore me"),
})}),
"list(\n object({\n foo: string,\n }),\n)",
},
}
for _, test := range tests {
got := typeString(test.Input.Type())
if got != test.Want {
t.Errorf("wrong result:\n%s", cmp.Diff(got, test.Want))
}
}
}