terraform/vendor/github.com/zclconf/go-cty/cty/set/ops.go

211 lines
5.1 KiB
Go
Raw Normal View History

package set
import (
"sort"
)
// Add inserts the given value into the receiving Set.
//
// This mutates the set in-place. This operation is not thread-safe.
func (s Set) Add(val interface{}) {
hv := s.rules.Hash(val)
if _, ok := s.vals[hv]; !ok {
s.vals[hv] = make([]interface{}, 0, 1)
}
bucket := s.vals[hv]
// See if an equivalent value is already present
for _, ev := range bucket {
if s.rules.Equivalent(val, ev) {
return
}
}
s.vals[hv] = append(bucket, val)
}
// Remove deletes the given value from the receiving set, if indeed it was
// there in the first place. If the value is not present, this is a no-op.
func (s Set) Remove(val interface{}) {
hv := s.rules.Hash(val)
bucket, ok := s.vals[hv]
if !ok {
return
}
for i, ev := range bucket {
if s.rules.Equivalent(val, ev) {
newBucket := make([]interface{}, 0, len(bucket)-1)
newBucket = append(newBucket, bucket[:i]...)
newBucket = append(newBucket, bucket[i+1:]...)
if len(newBucket) > 0 {
s.vals[hv] = newBucket
} else {
delete(s.vals, hv)
}
return
}
}
}
// Has returns true if the given value is in the receiving set, or false if
// it is not.
func (s Set) Has(val interface{}) bool {
hv := s.rules.Hash(val)
bucket, ok := s.vals[hv]
if !ok {
return false
}
for _, ev := range bucket {
if s.rules.Equivalent(val, ev) {
return true
}
}
return false
}
// Copy performs a shallow copy of the receiving set, returning a new set
// with the same rules and elements.
func (s Set) Copy() Set {
ret := NewSet(s.rules)
for k, v := range s.vals {
ret.vals[k] = v
}
return ret
}
// Iterator returns an iterator over values in the set. If the set's rules
// implement OrderedRules then the result is ordered per those rules. If
// no order is provided, or if it is not a total order, then the iteration
// order is undefined but consistent for a particular version of cty. Do not
// rely on specific ordering between cty releases unless the rules order is a
// total order.
//
// The pattern for using the returned iterator is:
//
// it := set.Iterator()
// for it.Next() {
// val := it.Value()
// // ...
// }
//
// Once an iterator has been created for a set, the set *must not* be mutated
// until the iterator is no longer in use.
func (s Set) Iterator() *Iterator {
vals := s.Values()
return &Iterator{
vals: vals,
idx: -1,
}
}
// EachValue calls the given callback once for each value in the set, in an
// undefined order that callers should not depend on.
func (s Set) EachValue(cb func(interface{})) {
it := s.Iterator()
for it.Next() {
cb(it.Value())
}
}
// Values returns a slice of all the values in the set. If the set rules have
// an order then the result is in that order. If no order is provided or if
// it is not a total order then the result order is undefined, but consistent
// for a particular set value within a specific release of cty.
func (s Set) Values() []interface{} {
var ret []interface{}
// Sort the bucketIds to ensure that we always traverse in a
// consistent order.
bucketIDs := make([]int, 0, len(s.vals))
for id := range s.vals {
bucketIDs = append(bucketIDs, id)
}
sort.Ints(bucketIDs)
for _, bucketID := range bucketIDs {
ret = append(ret, s.vals[bucketID]...)
}
if orderRules, ok := s.rules.(OrderedRules); ok {
sort.SliceStable(ret, func(i, j int) bool {
return orderRules.Less(ret[i], ret[j])
})
}
return ret
}
// Length returns the number of values in the set.
func (s Set) Length() int {
var count int
for _, bucket := range s.vals {
count = count + len(bucket)
}
return count
}
// Union returns a new set that contains all of the members of both the
// receiving set and the given set. Both sets must have the same rules, or
// else this function will panic.
func (s1 Set) Union(s2 Set) Set {
mustHaveSameRules(s1, s2)
rs := NewSet(s1.rules)
s1.EachValue(func(v interface{}) {
rs.Add(v)
})
s2.EachValue(func(v interface{}) {
rs.Add(v)
})
return rs
}
// Intersection returns a new set that contains the values that both the
// receiver and given sets have in common. Both sets must have the same rules,
// or else this function will panic.
func (s1 Set) Intersection(s2 Set) Set {
mustHaveSameRules(s1, s2)
rs := NewSet(s1.rules)
s1.EachValue(func(v interface{}) {
if s2.Has(v) {
rs.Add(v)
}
})
return rs
}
// Subtract returns a new set that contains all of the values from the receiver
// that are not also in the given set. Both sets must have the same rules,
// or else this function will panic.
func (s1 Set) Subtract(s2 Set) Set {
mustHaveSameRules(s1, s2)
rs := NewSet(s1.rules)
s1.EachValue(func(v interface{}) {
if !s2.Has(v) {
rs.Add(v)
}
})
return rs
}
// SymmetricDifference returns a new set that contains all of the values from
// both the receiver and given sets, except those that both sets have in
// common. Both sets must have the same rules, or else this function will
// panic.
func (s1 Set) SymmetricDifference(s2 Set) Set {
mustHaveSameRules(s1, s2)
rs := NewSet(s1.rules)
s1.EachValue(func(v interface{}) {
if !s2.Has(v) {
rs.Add(v)
}
})
s2.EachValue(func(v interface{}) {
if !s1.Has(v) {
rs.Add(v)
}
})
return rs
}