2017-09-20 23:39:34 +02:00
|
|
|
package set
|
|
|
|
|
|
|
|
import (
|
|
|
|
"sort"
|
|
|
|
)
|
|
|
|
|
|
|
|
// Add inserts the given value into the receiving Set.
|
|
|
|
//
|
|
|
|
// This mutates the set in-place. This operation is not thread-safe.
|
|
|
|
func (s Set) Add(val interface{}) {
|
|
|
|
hv := s.rules.Hash(val)
|
|
|
|
if _, ok := s.vals[hv]; !ok {
|
|
|
|
s.vals[hv] = make([]interface{}, 0, 1)
|
|
|
|
}
|
|
|
|
bucket := s.vals[hv]
|
|
|
|
|
|
|
|
// See if an equivalent value is already present
|
|
|
|
for _, ev := range bucket {
|
|
|
|
if s.rules.Equivalent(val, ev) {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
s.vals[hv] = append(bucket, val)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Remove deletes the given value from the receiving set, if indeed it was
|
|
|
|
// there in the first place. If the value is not present, this is a no-op.
|
|
|
|
func (s Set) Remove(val interface{}) {
|
|
|
|
hv := s.rules.Hash(val)
|
|
|
|
bucket, ok := s.vals[hv]
|
|
|
|
if !ok {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
for i, ev := range bucket {
|
|
|
|
if s.rules.Equivalent(val, ev) {
|
|
|
|
newBucket := make([]interface{}, 0, len(bucket)-1)
|
|
|
|
newBucket = append(newBucket, bucket[:i]...)
|
|
|
|
newBucket = append(newBucket, bucket[i+1:]...)
|
|
|
|
if len(newBucket) > 0 {
|
|
|
|
s.vals[hv] = newBucket
|
|
|
|
} else {
|
|
|
|
delete(s.vals, hv)
|
|
|
|
}
|
|
|
|
return
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Has returns true if the given value is in the receiving set, or false if
|
|
|
|
// it is not.
|
|
|
|
func (s Set) Has(val interface{}) bool {
|
|
|
|
hv := s.rules.Hash(val)
|
|
|
|
bucket, ok := s.vals[hv]
|
|
|
|
if !ok {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
|
|
|
for _, ev := range bucket {
|
|
|
|
if s.rules.Equivalent(val, ev) {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
2018-03-03 18:43:09 +01:00
|
|
|
// Copy performs a shallow copy of the receiving set, returning a new set
|
|
|
|
// with the same rules and elements.
|
|
|
|
func (s Set) Copy() Set {
|
|
|
|
ret := NewSet(s.rules)
|
|
|
|
for k, v := range s.vals {
|
|
|
|
ret.vals[k] = v
|
|
|
|
}
|
|
|
|
return ret
|
|
|
|
}
|
|
|
|
|
2019-05-01 00:29:47 +02:00
|
|
|
// Iterator returns an iterator over values in the set. If the set's rules
|
|
|
|
// implement OrderedRules then the result is ordered per those rules. If
|
|
|
|
// no order is provided, or if it is not a total order, then the iteration
|
|
|
|
// order is undefined but consistent for a particular version of cty. Do not
|
|
|
|
// rely on specific ordering between cty releases unless the rules order is a
|
|
|
|
// total order.
|
2017-09-20 23:39:34 +02:00
|
|
|
//
|
|
|
|
// The pattern for using the returned iterator is:
|
|
|
|
//
|
|
|
|
// it := set.Iterator()
|
|
|
|
// for it.Next() {
|
|
|
|
// val := it.Value()
|
|
|
|
// // ...
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// Once an iterator has been created for a set, the set *must not* be mutated
|
|
|
|
// until the iterator is no longer in use.
|
|
|
|
func (s Set) Iterator() *Iterator {
|
2019-05-01 00:29:47 +02:00
|
|
|
vals := s.Values()
|
2017-09-20 23:39:34 +02:00
|
|
|
|
|
|
|
return &Iterator{
|
2019-05-01 00:29:47 +02:00
|
|
|
vals: vals,
|
|
|
|
idx: -1,
|
2017-09-20 23:39:34 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// EachValue calls the given callback once for each value in the set, in an
|
|
|
|
// undefined order that callers should not depend on.
|
|
|
|
func (s Set) EachValue(cb func(interface{})) {
|
|
|
|
it := s.Iterator()
|
|
|
|
for it.Next() {
|
|
|
|
cb(it.Value())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-05-01 00:29:47 +02:00
|
|
|
// Values returns a slice of all the values in the set. If the set rules have
|
|
|
|
// an order then the result is in that order. If no order is provided or if
|
|
|
|
// it is not a total order then the result order is undefined, but consistent
|
|
|
|
// for a particular set value within a specific release of cty.
|
2017-09-20 23:39:34 +02:00
|
|
|
func (s Set) Values() []interface{} {
|
|
|
|
var ret []interface{}
|
2019-05-01 00:29:47 +02:00
|
|
|
// Sort the bucketIds to ensure that we always traverse in a
|
|
|
|
// consistent order.
|
|
|
|
bucketIDs := make([]int, 0, len(s.vals))
|
|
|
|
for id := range s.vals {
|
|
|
|
bucketIDs = append(bucketIDs, id)
|
|
|
|
}
|
|
|
|
sort.Ints(bucketIDs)
|
|
|
|
|
|
|
|
for _, bucketID := range bucketIDs {
|
|
|
|
ret = append(ret, s.vals[bucketID]...)
|
|
|
|
}
|
|
|
|
|
|
|
|
if orderRules, ok := s.rules.(OrderedRules); ok {
|
|
|
|
sort.SliceStable(ret, func(i, j int) bool {
|
|
|
|
return orderRules.Less(ret[i], ret[j])
|
|
|
|
})
|
|
|
|
}
|
|
|
|
|
2017-09-20 23:39:34 +02:00
|
|
|
return ret
|
|
|
|
}
|
|
|
|
|
|
|
|
// Length returns the number of values in the set.
|
|
|
|
func (s Set) Length() int {
|
|
|
|
var count int
|
|
|
|
for _, bucket := range s.vals {
|
|
|
|
count = count + len(bucket)
|
|
|
|
}
|
|
|
|
return count
|
|
|
|
}
|
|
|
|
|
|
|
|
// Union returns a new set that contains all of the members of both the
|
|
|
|
// receiving set and the given set. Both sets must have the same rules, or
|
|
|
|
// else this function will panic.
|
|
|
|
func (s1 Set) Union(s2 Set) Set {
|
|
|
|
mustHaveSameRules(s1, s2)
|
|
|
|
rs := NewSet(s1.rules)
|
|
|
|
s1.EachValue(func(v interface{}) {
|
|
|
|
rs.Add(v)
|
|
|
|
})
|
|
|
|
s2.EachValue(func(v interface{}) {
|
|
|
|
rs.Add(v)
|
|
|
|
})
|
|
|
|
return rs
|
|
|
|
}
|
|
|
|
|
|
|
|
// Intersection returns a new set that contains the values that both the
|
|
|
|
// receiver and given sets have in common. Both sets must have the same rules,
|
|
|
|
// or else this function will panic.
|
|
|
|
func (s1 Set) Intersection(s2 Set) Set {
|
|
|
|
mustHaveSameRules(s1, s2)
|
|
|
|
rs := NewSet(s1.rules)
|
|
|
|
s1.EachValue(func(v interface{}) {
|
|
|
|
if s2.Has(v) {
|
|
|
|
rs.Add(v)
|
|
|
|
}
|
|
|
|
})
|
|
|
|
return rs
|
|
|
|
}
|
|
|
|
|
|
|
|
// Subtract returns a new set that contains all of the values from the receiver
|
|
|
|
// that are not also in the given set. Both sets must have the same rules,
|
|
|
|
// or else this function will panic.
|
|
|
|
func (s1 Set) Subtract(s2 Set) Set {
|
|
|
|
mustHaveSameRules(s1, s2)
|
|
|
|
rs := NewSet(s1.rules)
|
|
|
|
s1.EachValue(func(v interface{}) {
|
|
|
|
if !s2.Has(v) {
|
|
|
|
rs.Add(v)
|
|
|
|
}
|
|
|
|
})
|
|
|
|
return rs
|
|
|
|
}
|
|
|
|
|
|
|
|
// SymmetricDifference returns a new set that contains all of the values from
|
|
|
|
// both the receiver and given sets, except those that both sets have in
|
|
|
|
// common. Both sets must have the same rules, or else this function will
|
|
|
|
// panic.
|
|
|
|
func (s1 Set) SymmetricDifference(s2 Set) Set {
|
|
|
|
mustHaveSameRules(s1, s2)
|
|
|
|
rs := NewSet(s1.rules)
|
|
|
|
s1.EachValue(func(v interface{}) {
|
|
|
|
if !s2.Has(v) {
|
|
|
|
rs.Add(v)
|
|
|
|
}
|
|
|
|
})
|
|
|
|
s2.EachValue(func(v interface{}) {
|
|
|
|
if !s1.Has(v) {
|
|
|
|
rs.Add(v)
|
|
|
|
}
|
|
|
|
})
|
|
|
|
return rs
|
|
|
|
}
|