Lighthouse performance pass (#418)

This commit is contained in:
Nathan Brown
2021-03-31 17:32:02 -05:00
committed by GitHub
parent e7e55618ff
commit 75f7bda0a4
12 changed files with 2378 additions and 972 deletions

View File

@ -1,6 +1,7 @@
package nebula
import (
"fmt"
"net"
"testing"
@ -13,7 +14,7 @@ import (
func TestOldIPv4Only(t *testing.T) {
// This test ensures our new ipv6 enabled LH protobuf IpAndPorts works with the old style to enable backwards compatibility
b := []byte{8, 129, 130, 132, 80, 16, 10}
var m IpAndPort
var m Ip4AndPort
err := proto.Unmarshal(b, &m)
assert.NoError(t, err)
assert.Equal(t, "10.1.1.1", int2ip(m.GetIp()).String())
@ -40,30 +41,6 @@ func TestNewLhQuery(t *testing.T) {
}
func TestNewipandportfromudpaddr(t *testing.T) {
blah := NewUDPAddrFromString("1.2.2.3:12345")
meh := NewIpAndPortFromUDPAddr(blah)
assert.Equal(t, uint32(16908803), meh.v4.Ip)
assert.Equal(t, uint32(12345), meh.v4.Port)
}
func TestSetipandportsfromudpaddrs(t *testing.T) {
blah := NewUDPAddrFromString("1.2.2.3:12345")
blah2 := NewUDPAddrFromString("9.9.9.9:47828")
group := []*udpAddr{blah, blah2}
var lh *LightHouse
lhh := lh.NewRequestHandler()
result := lhh.setIpAndPortsFromNetIps(group)
assert.IsType(t, []*ip4Or6{}, result)
assert.Len(t, result, 2)
assert.Equal(t, uint32(0x01020203), result[0].v4.Ip)
assert.Equal(t, uint32(12345), result[0].v4.Port)
assert.Equal(t, uint32(0x09090909), result[1].v4.Ip)
assert.Equal(t, uint32(47828), result[1].v4.Port)
//t.Error(reflect.TypeOf(hah))
}
func Test_lhStaticMapping(t *testing.T) {
l := NewTestLogger()
lh1 := "10.128.0.2"
@ -96,11 +73,17 @@ func BenchmarkLighthouseHandleRequest(b *testing.B) {
hAddr := NewUDPAddrFromString("4.5.6.7:12345")
hAddr2 := NewUDPAddrFromString("4.5.6.7:12346")
lh.addrMap[3] = []*udpAddr{hAddr, hAddr2}
lh.addrMap[3] = &ip4And6{v4: []*Ip4AndPort{
NewIp4AndPort(hAddr.IP, uint32(hAddr.Port)),
NewIp4AndPort(hAddr2.IP, uint32(hAddr2.Port))},
}
rAddr := NewUDPAddrFromString("1.2.2.3:12345")
rAddr2 := NewUDPAddrFromString("1.2.2.3:12346")
lh.addrMap[2] = []*udpAddr{rAddr, rAddr2}
lh.addrMap[2] = &ip4And6{v4: []*Ip4AndPort{
NewIp4AndPort(rAddr.IP, uint32(rAddr.Port)),
NewIp4AndPort(rAddr2.IP, uint32(rAddr2.Port))},
}
mw := &mockEncWriter{}
@ -109,14 +92,14 @@ func BenchmarkLighthouseHandleRequest(b *testing.B) {
req := &NebulaMeta{
Type: NebulaMeta_HostQuery,
Details: &NebulaMetaDetails{
VpnIp: 4,
IpAndPorts: nil,
VpnIp: 4,
Ip4AndPorts: nil,
},
}
p, err := proto.Marshal(req)
assert.NoError(b, err)
for n := 0; n < b.N; n++ {
lhh.HandleRequest(rAddr, 2, p, nil, mw)
lhh.HandleRequest(rAddr, 2, p, mw)
}
})
b.Run("found", func(b *testing.B) {
@ -124,19 +107,139 @@ func BenchmarkLighthouseHandleRequest(b *testing.B) {
req := &NebulaMeta{
Type: NebulaMeta_HostQuery,
Details: &NebulaMetaDetails{
VpnIp: 3,
IpAndPorts: nil,
VpnIp: 3,
Ip4AndPorts: nil,
},
}
p, err := proto.Marshal(req)
assert.NoError(b, err)
for n := 0; n < b.N; n++ {
lhh.HandleRequest(rAddr, 2, p, nil, mw)
lhh.HandleRequest(rAddr, 2, p, mw)
}
})
}
func TestLighthouse_Memory(t *testing.T) {
l := NewTestLogger()
myUdpAddr0 := &udpAddr{IP: net.ParseIP("10.0.0.2"), Port: 4242}
myUdpAddr1 := &udpAddr{IP: net.ParseIP("192.168.0.2"), Port: 4242}
myUdpAddr2 := &udpAddr{IP: net.ParseIP("172.16.0.2"), Port: 4242}
myUdpAddr3 := &udpAddr{IP: net.ParseIP("100.152.0.2"), Port: 4242}
myUdpAddr4 := &udpAddr{IP: net.ParseIP("24.15.0.2"), Port: 4242}
myUdpAddr5 := &udpAddr{IP: net.ParseIP("192.168.0.2"), Port: 4243}
myUdpAddr6 := &udpAddr{IP: net.ParseIP("192.168.0.2"), Port: 4244}
myUdpAddr7 := &udpAddr{IP: net.ParseIP("192.168.0.2"), Port: 4245}
myUdpAddr8 := &udpAddr{IP: net.ParseIP("192.168.0.2"), Port: 4246}
myUdpAddr9 := &udpAddr{IP: net.ParseIP("192.168.0.2"), Port: 4247}
myUdpAddr10 := &udpAddr{IP: net.ParseIP("192.168.0.2"), Port: 4248}
myUdpAddr11 := &udpAddr{IP: net.ParseIP("192.168.0.2"), Port: 4249}
myVpnIp := ip2int(net.ParseIP("10.128.0.2"))
theirUdpAddr0 := &udpAddr{IP: net.ParseIP("10.0.0.3"), Port: 4242}
theirUdpAddr1 := &udpAddr{IP: net.ParseIP("192.168.0.3"), Port: 4242}
theirUdpAddr2 := &udpAddr{IP: net.ParseIP("172.16.0.3"), Port: 4242}
theirUdpAddr3 := &udpAddr{IP: net.ParseIP("100.152.0.3"), Port: 4242}
theirUdpAddr4 := &udpAddr{IP: net.ParseIP("24.15.0.3"), Port: 4242}
theirVpnIp := ip2int(net.ParseIP("10.128.0.3"))
lhIP := net.ParseIP("10.128.0.1")
udpServer, _ := NewListener(l, "0.0.0.0", 0, true)
lh := NewLightHouse(l, true, 1, []uint32{ip2int(lhIP)}, 10, 10003, udpServer, false, 1, false)
lhh := lh.NewRequestHandler()
// Test that my first update responds with just that
newLHHostUpdate(myUdpAddr0, myVpnIp, []*udpAddr{myUdpAddr1, myUdpAddr2}, lhh)
r := newLHHostRequest(myUdpAddr0, myVpnIp, myVpnIp, lhh)
assertIp4InArray(t, r.msg.Details.Ip4AndPorts, myUdpAddr1, myUdpAddr2)
// Ensure we don't accumulate addresses
newLHHostUpdate(myUdpAddr0, myVpnIp, []*udpAddr{myUdpAddr3}, lhh)
r = newLHHostRequest(myUdpAddr0, myVpnIp, myVpnIp, lhh)
assertIp4InArray(t, r.msg.Details.Ip4AndPorts, myUdpAddr3)
// Grow it back to 2
newLHHostUpdate(myUdpAddr0, myVpnIp, []*udpAddr{myUdpAddr1, myUdpAddr4}, lhh)
r = newLHHostRequest(myUdpAddr0, myVpnIp, myVpnIp, lhh)
assertIp4InArray(t, r.msg.Details.Ip4AndPorts, myUdpAddr1, myUdpAddr4)
// Update a different host
newLHHostUpdate(theirUdpAddr0, theirVpnIp, []*udpAddr{theirUdpAddr1, theirUdpAddr2, theirUdpAddr3, theirUdpAddr4}, lhh)
r = newLHHostRequest(theirUdpAddr0, theirVpnIp, myVpnIp, lhh)
assertIp4InArray(t, r.msg.Details.Ip4AndPorts, theirUdpAddr1, theirUdpAddr2, theirUdpAddr3, theirUdpAddr4)
// Make sure we didn't get changed
r = newLHHostRequest(myUdpAddr0, myVpnIp, myVpnIp, lhh)
assertIp4InArray(t, r.msg.Details.Ip4AndPorts, myUdpAddr1, myUdpAddr4)
// Finally ensure proper ordering and limiting
// Send 12 addrs, get 10 back, one removed on a dupe check the other by limiting
newLHHostUpdate(
myUdpAddr0,
myVpnIp,
[]*udpAddr{
myUdpAddr1,
myUdpAddr2,
myUdpAddr3,
myUdpAddr4,
myUdpAddr5,
myUdpAddr5, //Duplicated on purpose
myUdpAddr6,
myUdpAddr7,
myUdpAddr8,
myUdpAddr9,
myUdpAddr10,
myUdpAddr11, // This should get cut
}, lhh)
r = newLHHostRequest(myUdpAddr0, myVpnIp, myVpnIp, lhh)
assertIp4InArray(
t,
r.msg.Details.Ip4AndPorts,
myUdpAddr1, myUdpAddr2, myUdpAddr3, myUdpAddr4, myUdpAddr5, myUdpAddr6, myUdpAddr7, myUdpAddr8, myUdpAddr9, myUdpAddr10,
)
}
func newLHHostRequest(fromAddr *udpAddr, myVpnIp, queryVpnIp uint32, lhh *LightHouseHandler) testLhReply {
req := &NebulaMeta{
Type: NebulaMeta_HostQuery,
Details: &NebulaMetaDetails{
VpnIp: queryVpnIp,
},
}
b, err := req.Marshal()
if err != nil {
panic(err)
}
w := &testEncWriter{}
lhh.HandleRequest(fromAddr, myVpnIp, b, w)
return w.lastReply
}
func newLHHostUpdate(fromAddr *udpAddr, vpnIp uint32, addrs []*udpAddr, lhh *LightHouseHandler) {
req := &NebulaMeta{
Type: NebulaMeta_HostUpdateNotification,
Details: &NebulaMetaDetails{
VpnIp: vpnIp,
Ip4AndPorts: make([]*Ip4AndPort, len(addrs)),
},
}
for k, v := range addrs {
req.Details.Ip4AndPorts[k] = &Ip4AndPort{Ip: ip2int(v.IP), Port: uint32(v.Port)}
}
b, err := req.Marshal()
if err != nil {
panic(err)
}
w := &testEncWriter{}
lhh.HandleRequest(fromAddr, vpnIp, b, w)
}
func Test_lhRemoteAllowList(t *testing.T) {
l := NewTestLogger()
c := NewConfig(l)
@ -154,48 +257,94 @@ func Test_lhRemoteAllowList(t *testing.T) {
lh := NewLightHouse(l, true, 1, []uint32{ip2int(lh1IP)}, 10, 10003, udpServer, false, 1, false)
lh.SetRemoteAllowList(allowList)
remote1 := "10.20.0.3"
remote1IP := net.ParseIP(remote1)
// A disallowed ip should not enter the cache but we should end up with an empty entry in the addrMap
remote1IP := net.ParseIP("10.20.0.3")
lh.AddRemote(ip2int(remote1IP), NewUDPAddr(remote1IP, uint16(4242)), true)
assert.Nil(t, lh.addrMap[ip2int(remote1IP)])
assert.NotNil(t, lh.addrMap[ip2int(remote1IP)])
assert.Empty(t, lh.addrMap[ip2int(remote1IP)].v4)
assert.Empty(t, lh.addrMap[ip2int(remote1IP)].v6)
remote2 := "10.128.0.3"
remote2IP := net.ParseIP(remote2)
// Make sure a good ip enters the cache and addrMap
remote2IP := net.ParseIP("10.128.0.3")
remote2UDPAddr := NewUDPAddr(remote2IP, uint16(4242))
lh.AddRemote(ip2int(remote2IP), remote2UDPAddr, true)
// Make sure the pointers are different but the contents are equal since we are using slices
assert.False(t, remote2UDPAddr == lh.addrMap[ip2int(remote2IP)][0])
assert.Equal(t, remote2UDPAddr, lh.addrMap[ip2int(remote2IP)][0])
}
assertIp4InArray(t, lh.addrMap[ip2int(remote2IP)].learnedV4, remote2UDPAddr)
//func NewLightHouse(amLighthouse bool, myIp uint32, ips []string, interval int, nebulaPort int, pc *udpConn, punchBack bool) *LightHouse {
// Another good ip gets into the cache, ordering is inverted
remote3IP := net.ParseIP("10.128.0.4")
remote3UDPAddr := NewUDPAddr(remote3IP, uint16(4243))
lh.AddRemote(ip2int(remote2IP), remote3UDPAddr, true)
assertIp4InArray(t, lh.addrMap[ip2int(remote2IP)].learnedV4, remote3UDPAddr, remote2UDPAddr)
/*
func TestLHQuery(t *testing.T) {
//n := NewLhQueryByIpString("10.128.0.3")
_, myNet, _ := net.ParseCIDR("10.128.0.0/16")
m := NewHostMap(myNet)
y, _ := net.ResolveUDPAddr("udp", "10.128.0.3:11111")
m.Add(ip2int(net.ParseIP("127.0.0.1")), y)
//t.Errorf("%s", m)
_ = m
_, n, _ := net.ParseCIDR("127.0.0.1/8")
/*udpServer, err := net.ListenUDP("udp", &net.UDPAddr{Port: 10009})
if err != nil {
t.Errorf("%s", err)
// If we exceed the length limit we should only have the most recent addresses
addedAddrs := []*udpAddr{}
for i := 0; i < 11; i++ {
remoteUDPAddr := NewUDPAddr(net.IP{10, 128, 0, 4}, uint16(4243+i))
lh.AddRemote(ip2int(remote2IP), remoteUDPAddr, true)
// The first entry here is a duplicate, don't add it to the assert list
if i != 0 {
addedAddrs = append(addedAddrs, remoteUDPAddr)
}
}
meh := NewLightHouse(n, m, []string{"10.128.0.2"}, false, 10, 10003, 10004)
//t.Error(m.Hosts)
meh2, err := meh.Query(ip2int(net.ParseIP("10.128.0.3")))
t.Error(err)
if err != nil {
return
}
t.Errorf("%s", meh2)
t.Errorf("%s", n)
// We should only have the last 10 of what we tried to add
assert.True(t, len(addedAddrs) >= 10, "We should have tried to add at least 10 addresses")
ln := len(addedAddrs)
assertIp4InArray(
t,
lh.addrMap[ip2int(remote2IP)].learnedV4,
addedAddrs[ln-1],
addedAddrs[ln-2],
addedAddrs[ln-3],
addedAddrs[ln-4],
addedAddrs[ln-5],
addedAddrs[ln-6],
addedAddrs[ln-7],
addedAddrs[ln-8],
addedAddrs[ln-9],
addedAddrs[ln-10],
)
}
type testLhReply struct {
nebType NebulaMessageType
nebSubType NebulaMessageSubType
vpnIp uint32
msg *NebulaMeta
}
type testEncWriter struct {
lastReply testLhReply
}
func (tw *testEncWriter) SendMessageToVpnIp(t NebulaMessageType, st NebulaMessageSubType, vpnIp uint32, p, _, _ []byte) {
tw.lastReply = testLhReply{
nebType: t,
nebSubType: st,
vpnIp: vpnIp,
msg: &NebulaMeta{},
}
err := proto.Unmarshal(p, tw.lastReply.msg)
if err != nil {
panic(err)
}
}
// assertIp4InArray asserts every address in want is at the same position in have and that the lengths match
func assertIp4InArray(t *testing.T, have []*Ip4AndPort, want ...*udpAddr) {
assert.Len(t, have, len(want))
for k, w := range want {
if !(have[k].Ip == ip2int(w.IP) && have[k].Port == uint32(w.Port)) {
assert.Fail(t, fmt.Sprintf("Response did not contain: %v:%v at %v; %v", w.IP, w.Port, k, translateV4toUdpAddr(have)))
}
}
}
func translateV4toUdpAddr(ips []*Ip4AndPort) []*udpAddr {
addrs := make([]*udpAddr, len(ips))
for k, v := range ips {
addrs[k] = NewUDPAddrFromLH4(v)
}
return addrs
}
*/