feat: Ajout des scripts d'import

This commit is contained in:
Simon 2023-02-15 15:38:11 +01:00
parent 471b194408
commit a6a7e50ab9
12 changed files with 378 additions and 6 deletions

51
.drone.yml Normal file
View File

@ -0,0 +1,51 @@
---
# drone encrypt P4Pillon/annuaire $AWS_ACCESS_KEY_ID
kind: secret
name: PRODUCTION_AWS_ACCESS_KEY_ID
data: msNI263HuJxTaNJ1ljO7SAH4v8RFFF/RlzwXCVnGtmrjLMF02ab1TYgOJq8WSUuYVSjQnVwi
---
# drone encrypt P4Pillon/annuaire $AWS_SECRET_ACCESS_KEY
kind: secret
name: PRODUCTION_AWS_SECRET_ACCESS_KEY
data: LgbdoMtBw9NOcvrpCmzhmZMEneFNzFXjODTJ6relyZkAHeYX8JtXSwSbss2d824wc/ANJZ9Pox10FhL99A33c6IhT9+QVXKme0S/ZuD6CMcWMx6fRHvlL2li2IQ=
---
kind: pipeline
type: docker
name: prod
steps:
- name: Import
image: python:3
commands:
- (cd scripts && pip install -r requirements.txt)
- (cd scripts && python3 finess-clean.py)
- (cd scripts && python3 finess-sisa.py)
- name: build website
image: klakegg/hugo:0.101.0-ext-debian-ci
commands:
- hugo --minify --environment production
- name: deploy
image: klakegg/hugo:0.101.0-ext-debian-ci
environment:
AWS_ACCESS_KEY_ID:
from_secret: PRODUCTION_AWS_ACCESS_KEY_ID
AWS_SECRET_ACCESS_KEY:
from_secret: PRODUCTION_AWS_SECRET_ACCESS_KEY
commands:
- hugo deploy --environment production
- name: notify
image: plugins/matrix@sha256:f1affb31b0c86963c97c6f976fa0dcb3cc84272057fd8558d609d28b3064bd7f
settings:
homeserver: https://converser.eu
roomid: "QwOITmkKxRJJyCSDOZ:converser.eu"
userid: "resilien:converser.eu"
accesstoken:
from_secret: MATRIX_ACCESSTOKEN
when:
status: [ failure ]

3
.gitignore vendored
View File

@ -1,2 +1,5 @@
public
resources
.hugo_build.lock
scripts/*.csv
static/data.json

3
README.md Normal file
View File

@ -0,0 +1,3 @@
# P4Pillon annuaire
Mise en place d'une cartographie des SISA en France.

View File

@ -1,3 +0,0 @@
baseURL = 'http://example.org/'
languageCode = 'en-us'
title = 'My New Hugo Site'

View File

@ -0,0 +1,26 @@
languageCode: fr-fr
defaultContentLanguage: fr
title: Annuaire
disableKinds:
- taxonomy
- term
params:
debug: false
description: Site d'annuaire de maison de santé en France
Keywords: Carte Sisa Maison santé
permalinks:
actualites: /actualites/:year/:month/:title/
markup:
goldmark:
renderer:
unsafe: true
disableHugoGeneratorInject: true
enableRobotsTXT: true
timeout: 200s

View File

@ -0,0 +1 @@
baseURL: http://localhost:1313/

View File

@ -0,0 +1,7 @@
baseURL: https://annuaire.p4pillon.org/
deployment:
targets:
- name: production
URL: >-
s3://annuaire.p4pillon.org?endpoint=https://s3.garage.resilien.cloud&disableSSL=true&s3ForcePathStyle=true&region=garage

View File

@ -38,13 +38,29 @@
attribution: '&copy; <a href="http://www.openstreetmap.org/copyright">OpenStreetMap</a>'
}).addTo(map);
var json = fetch('./finess-small.json').then(response => {
const columns = {
finessET: 0,
name: 1,
dep: 2,
tel: 3,
siret: 4,
x: 5,
y: 6,
}
var json = fetch('./data.json').then(response => {
return response.json();
})
.then(jsondata => {
var markersCluster = new L.MarkerClusterGroup();
for (const msp of jsondata) {
const marker = L.marker([msp[5], msp[6]]).bindPopup(msp[0] + "(" + msp[2] + ")<br><a href='tel:" + msp[3] + "'>" + msp[3] + "</a>");
const marker = L
.marker([msp[columns.x], msp[columns.y]])
.bindPopup(
msp[columns.name] + " (" + msp[columns.dep] + ")<br>" +
"Établissement FINESS N°" + msp[columns.finessET] + "<br>" +
(msp[columns.siret] != null ? "SIREN : <a rel='noreferrer' target='_blank' href='https://data.inpi.fr/entreprises/" + msp[columns.siret].substring(0, 9) + "'>" + msp[columns.siret].substring(0, 9) + "</a><br>" : "") +
(msp[columns.tel] != null ? "<a href='tel:" + msp[columns.tel] + "'>" + msp[columns.tel] + "</a>" : "")
);
markersCluster.addLayer(marker);
}
map.addLayer(markersCluster);

162
scripts/finess-clean.py Normal file
View File

@ -0,0 +1,162 @@
# -*- coding: utf-8 -*-
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:hydrogen
# text_representation:
# extension: .py
# format_name: hydrogen
# format_version: '1.3'
# jupytext_version: 1.14.1
# kernelspec:
# display_name: Python 3 (ipykernel)
# language: python
# name: python3
# ---
# %% [markdown]
# # Production d'un csv utilisable de la base FINESS
#
# En l'état, l'export CSV de la [base FINESS][finess] n'est pas vraiment satisfaisant et utilisable.
#
# - Le fichier n'est pas réellement un CSV.
# - Il est bizarrement découpé en deux sections qui correspondent au XML.
# - Les colonnes n'ont pas de nom.
# - Le fichier est encodé au format windows.
#
# [finess]: https://www.data.gouv.fr/en/datasets/finess-extraction-du-fichier-des-etablissements/
# %% gradient={"editing": false, "id": "4facc182", "kernelId": ""}
import pandas as pd
import numpy as np
import requests
# %% gradient={"editing": false, "id": "3f7b5d32", "kernelId": ""}
dataset_api = "https://www.data.gouv.fr/api/1/datasets/finess-extraction-du-fichier-des-etablissements/"
# %% gradient={"editing": false, "id": "58d641d4", "kernelId": ""}
resources = (requests
.get(dataset_api)
.json()
['resources']
)
resource_geoloc = [ r for r in resources if r['type'] == 'main' and 'géolocalisés' in r['title']][0]
# %% gradient={"editing": false, "id": "13dd939b", "kernelId": ""}
headers = [
'section',
'nofinesset',
'nofinessej',
'rs',
'rslongue',
'complrs',
'compldistrib',
'numvoie',
'typvoie',
'voie',
'compvoie',
'lieuditbp',
'commune',
'departement',
'libdepartement',
'ligneacheminement',
'telephone',
'telecopie',
'categetab',
'libcategetab',
'categagretab',
'libcategagretab',
'siret',
'codeape',
'codemft',
'libmft',
'codesph',
'libsph',
'dateouv',
'dateautor',
'maj',
'numuai'
]
# %% gradient={"editing": false, "id": "b68dac89", "kernelId": ""}
geoloc_names = [
'nofinesset',
'coordxet',
'coordyet',
'sourcecoordet',
'datemaj'
]
# %% gradient={"editing": false, "id": "4492d3dd", "kernelId": ""}
raw_df = (pd
.read_csv(resource_geoloc['url'],
sep=";", encoding="utf-8", header=None, skiprows=1,
dtype='str',
names=headers)
.drop(columns=['section'])
)
raw_df
# %% gradient={"editing": false, "id": "2efc14bc", "kernelId": ""}
structures = (raw_df
.iloc[:int(raw_df.index.size/2)]
)
structures
# %% gradient={"editing": false, "id": "283be3bb", "kernelId": ""}
geolocalisations = (raw_df
.iloc[int(raw_df.index.size/2):]
.drop(columns=raw_df.columns[5:])
.rename(columns=lambda x: geoloc_names[list(raw_df.columns).index(x)])
)
geolocalisations
# %% gradient={"editing": false, "id": "b54e527e", "kernelId": ""}
clean_df = (structures
.merge(geolocalisations, on="nofinesset", how="left")
)
clean_df
# %%
clean_df.sample().T
# %%
clean_df["siret"]
# %% [markdown] gradient={"editing": false, "id": "82306369-229c-418f-9138-d753e1b71ce4", "kernelId": ""}
# ## Vérification de la qualité des données
# %% gradient={"editing": false, "id": "64975e82-5f97-4bb4-b1d3-8aed85fa37cd", "kernelId": "", "source_hidden": false} jupyter={"outputs_hidden": false}
intersection = pd.Series(np.intersect1d(structures.nofinesset.values, geolocalisations.nofinesset.values))
intersection.shape
# %% gradient={"editing": false, "id": "07e3c1cb-7032-4d83-833c-0979d2592f3c", "kernelId": "", "source_hidden": false} jupyter={"outputs_hidden": false}
only_structures = (structures
[ ~structures.nofinesset.isin(intersection) ]
)
only_structures
# %% gradient={"editing": false, "id": "cfb13e95-b622-4d89-be56-61397dc4370e", "kernelId": "", "source_hidden": false} jupyter={"outputs_hidden": false}
only_geolocalisations = (geolocalisations
[ ~geolocalisations.nofinesset.isin(intersection) ]
)
only_geolocalisations
# %% gradient={"editing": false, "id": "92cd9e34-74c8-454c-96d8-3c628e7b94bd", "kernelId": "", "source_hidden": false} jupyter={"outputs_hidden": false}
geolocalisations_missing = []
# %% [markdown] gradient={"editing": false, "id": "ff24d2da-6b7e-49ca-8ac9-cc1e90d32235", "kernelId": ""}
# ## Export final
# %% gradient={"editing": false, "id": "8f6f3c73-4c14-4e82-ac63-cdf9ab8e4b21", "kernelId": "", "source_hidden": false} jupyter={"outputs_hidden": false}
clean_df.to_csv('finess-clean.csv', encoding='utf-8')
# %%

104
scripts/finess-sisa.py Normal file
View File

@ -0,0 +1,104 @@
# import pandas with shortcut 'pd'
import pandas as pd
import os
from pyproj import Transformer, transform
transformer = Transformer.from_crs(2154, 4326)
headers = [
'section',
'nofinesset',
'nofinessej',
'rs',
'rslongue',
'complrs',
'compldistrib',
'numvoie',
'typvoie',
'voie',
'compvoie',
'lieuditbp',
'commune',
'departement',
'libdepartement',
'ligneacheminement',
'telephone',
'telecopie',
'categetab',
'libcategetab',
'categagretab',
'libcategagretab',
'siret',
'codeape',
'codemft',
'libmft',
'codesph',
'libsph',
'dateouv',
'dateautor',
'maj',
'numuai',
'coordxet',
'coordyet',
'sourcecoordet',
'datemaj'
]
# read_csv function which is used to read the required CSV file
data = pd.read_csv('./finess-clean.csv', sep=",", dtype='str', names=headers)
# display
#print("Original 'input.csv' CSV Data: \n")
#print(data)
header_drop = [
'section',
# 'nofinesset',
'nofinessej',
'rs',
#'rslongue',
'complrs',
'compldistrib',
'numvoie',
'typvoie',
'voie',
'compvoie',
'lieuditbp',
'commune',
#'departement',
'libdepartement',
'ligneacheminement',
#'telephone',
'telecopie',
'categetab',
'libcategetab',
'categagretab',
'libcategagretab',
#'siret',
'codeape',
'codemft',
'libmft',
'codesph',
'libsph',
'dateouv',
'dateautor',
'maj',
'numuai',
#'coordxet',
#'coordyet',
'sourcecoordet',
'datemaj'
]
data = data.query('categetab == "603"')
# drop function which is used in removing or deleting rows or columns from the CSV files
data.drop(header_drop, inplace=True, axis=1)
def convertCoord (row):
row.coordxet, row.coordyet = transformer.transform(row.coordxet, row.coordyet)
return row
data.transform(convertCoord, axis=1)
data.to_json('../static/data.json', orient='values') #https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_json.html?highlight=to_json#pandas.DataFrame.to_json

3
scripts/requirements.txt Normal file
View File

@ -0,0 +1,3 @@
pandas==1.5.0
requests==2.28.1
pyproj==3.4.0

File diff suppressed because one or more lines are too long